
Intrusion Detection at Scale with the Assistance of
a Command-line Language Model

Jiongliang Lin1 Yiwen Guo† Hao Chen2

1Sun Yat-sen University, China 2UC Davis, US
linjliang3@mail2.sysu.edu.cn, guoyiwen89@gmail.com, chen@ucdavis.edu

Abstract—Intrusion detection is a long standing and crucial
problem in security. A system capable of detecting intrusions
automatically is on great demand in enterprise security solutions.
Existing solutions rely heavily on hand-crafted rules designed by
security operators, which suffer from high false negative rates
and poor generalization ability to new, zero-day attacks at scale.
AI and machine learning offer promising solutions to address
the issues, by inspecting abnormal user behaviors intelligently
and automatically from data. However, existing learning-based
intrusion detection systems in the literature are mostly designed
for small data, and they lack the ability to leverage the power
of big data in cloud environments. In this paper, we target
at this problem and introduce an intrusion detection system
which incorporates large-scale pre-training, so as to train a large
language model based on tens of millions of command lines
for AI-based intrusion detection. Experiments performed on 30
million training samples and 10 million test samples verify the
effectiveness of our solution.

Index Terms—Intrusion detection, anomaly detection, language
model, large-scale pre-training, command lines

I. INTRODUCTION

In this paper, we introduce an intrusion detection system
(IDS) that incorporates large-scale self-supervised pre-training
to train a language model that could release the power of
big data for intrusion detection. We take advantage of user
command lines to train a language model. Equipped with the
command-line language model, we are capable of building
an IDS to continuously learn from tens of millions of user
command lines every week for digging out future attacks and
intrusions. Figure 1 illustrates the pipeline.

To verify its effectiveness, we performed an experiment on
more than 30 million training command lines collected in a
production cloud environment, and evaluated the performance
of our solution on other 10 million command lines. To the
best of our knowledge, this is the first attempt for adopting
advanced AI models to such large-scale data for intrusion
detection in the literature. Systematic study has been per-
formed, and experimental results show the effectiveness of
our IDS at scale. Specifically, tuning the model leads to a
prediction precision of > 83% in digging out intrusions
that should have been detected (yet missed unfortunately)
by a commercial IDS, while ensuring that intrusions pre-
viously confirmed by the commercial IDS are also spotted.
The overall prediction precision of the method is > 99%,
making it possible to be used as a competitive replacement

†Yiwen Guo is the corresponding author.

of the commercial IDS. Qualitative analyses also show the
effectiveness of the developed methods. Intriguing examples
are provided to shed light on how the model helps.

The key contributions of this paper are threefold. First,
we marry self-supervised learning with intrusion detection,
which are core problems in different communities. Second,
we, probably for the first time, develop a language model to
specifically understand event logs and command lines at scale.
Third, methods have been proposed to adapt the model to
intrusion detection in practice, leading to superior performance
in comparison with a commercial IDS in a systematic and
large-scale evaluation.

Logging Pre-processing Tokenization

InferenceIntrusion: Yes or no?

Logging Pre-processing Tokenization

Pre-trainingFine-tuning

Inference

Training

php		–r “phpinfo();“
python main.py
vim ~/.bashrc
…

php		⎵– r ⎵“ php info () ; “
python ⎵main . py
vim ⎵~/. bashrc
…

watch -n 1 nvidia-smi

watch ⎵- n ⎵1 ⎵nvidia - smi

Fig. 1. The training and inference pipeline of our IDS.

II. A LANGUAGE MODEL FOR EVENT LOGS

There exist an extremely large amount of unlabeled data
in cloud environments, and we consider introducing self-
supervised pre-training to IDS, to fully release the power of
such big data. At present, cloud computing solutions employ
a command-line interface that receives text-based commands
from users. All terminal behaviors of a user, either benign or
adversarial, can be fully recorded by logging command-line
operations, and intrusion detection can further be performed
by analyzing his/her command-line operations. Hence, we
focus on command lines in this work. The solutions based
on command lines can be combined with IDSes that analyze
other signs of adversarial activitivies (e.g., the existence of
malwares [3], [25]), and it can be studied in future work.

A. Data Logging and Pre-processing

Data should be collected in the first place for training
language models (see Figure 2). Since typos inevitably exist,
a non-negligible portion of the command-line data cannot
be successfully executed by the system, and therefore can

hardly be harmful to the system. Removing such command-
line records from deeper analyses not only improves run-time
performance of the IDS, but can also be beneficial to training
AI models required by the IDS. To achieve this, one can
simply utilize a parser to try parsing each command line into
unified types. A parser converts each command line into a tree
structure with command nodes, and it is capable of separating
command names from flags and arguments. As shown in
Figure 2, command lines like “/*/*/* -> /*/*/* ->”
can thus be removed, since it involves an invalid redirection
operator “->”. Nevertheless, it can also be observed in the
figure that a parser may incorrectly treat “dcoker” as a
command name, which is in fact a typo for “docker”
(though “docker” should appear much more frequently than
“dcoker” in logs). In order to address this, one can introduce
a list of concerned command names, either by exhaustively
collecting all valid commands in the host environment or by
filtering out data that shows extremely low frequency and thus
is less likely to be valid. Figure 2 illustrates the pre-processing
steps.

php -r "phpinfo();"

python main.py

vim ~/.bashrc

curl https://*/*.sh | bash

df -h | grep "/*/*"

dcoker attach --sig-proxy=false *

chdmod +x *.sh

/*/*/* -> /*/*/* ->

…

php -r "phpinfo();"

python main.py

vim ~/.bashrc

curl https://*/*.sh | bash

df -h | grep "/*/*"

dcoker attach --sig-proxy=false *

chdmod +x *.sh

/*/*/* -> /*/*/* ->

…

php -r "phpinfo();"

python main.py

vim ~/.bashrc

curl https://*/*.sh | bash

df -h | grep "/*/*"

dcoker attach --sig-proxy=false *

chdmod +x *.sh

/*/*/* -> /*/*/* ->

…

Command Occurrence

cd ********

echo ********

chmod ********

grep ********

ls ********

awk *******

ll *******

df *******

ps *******

cat *******

rm *******

docker *******

… …

Bash Parser

Command Filter

Fig. 2. Pre-processing using a parser and a list of concerned commands.
Invalid command lines will be removed from further processing.

B. Large-scale Self-supervised Pre-training

Just like in natural language processing, where identification
of contiguous characters that form a semantic unit (e.g., words
and subwords called tokens) in each sentence is required, here
we also need to divide command lines of their original string
format into smaller units (i.e., tokens) that somehow align
with the Bash command syntax. In this work, we use the BPE
tokenizer [20].

After tokenization, each command line is separated into
a sequence of sub-strings, i.e., tokens. Each token can be
represented by a unique one-hot vector indicating its token

ID. Training on such data at scale in a self-supervised manner
has been studied, which has inspired mask language modeling
(MLM) [5], [13] and causal language modeling [2]. Since
MLM excels in downstream discriminative tasks, we focus on
this line of work and attempt to adapt them to command line
data. We use the same masking strategy as in RoBERTa [13].
That is, at each pre-training iteration, each token in the training
command lines will be replaced with a “[MASK]” token,
in a probability of q. The learning model is encouraged to
reconstruct the randomly masked token using those unmasked
ones which are generally informative enough to accomplish
the task. Imagining that when [MASK] http://*/*.sh |
bash is presented, practitioners are easy to infer that this
command line is probably crafted for downloading a bash
script and execute it, and those familiar with the command-
line interface should know that the masked token is likely to
be curl or wget. This process does not require any human
annotation and is considered as self-supervised.

The transformer architecture [23] is chosen for training,
which takes a sequence of summations of the token encoding
and positional encoding vectors as input and it produces a
sequence of feature representations as output. Each of the
feature representations, which is a vector, will be referred to
as a token embedding in this paper.

(Pre-)training of the transformer and encoding vectors, at
each iteration, often takes a batch of samples together as
model inputs, and an average of the MLM loss over all these
samples is calculated. The model is trained to minimize such
average loss. Backpropagation [17], [9] and stochastic gradient
descent [1] are utilized for computing gradients and updating
parameters in θ.

III. UNSUPERVISED ANOMALY DETECTION USING THE
COMMAND-LINE LANGUAGE MODEL

The model pre-trained as in Section II-B can be regarded
as a powerful encoder [13], and we can easily obtain semantic
embedding of any command line from the output of such an
encoder.

There exist several different ways of utilizing such a model
and the produced embeddings. One option is unsupervised
anomaly detection [23]. The core assumption for such a line
of methods to succeed is the rare occurrence of anomaly
(which should be malicious command-line operations related
to intrusions in our scenario). Typical unsupervised anomaly
detection methods, including one-class support vector ma-
chines [18], isolation forest [11], and principal component
analysis (PCA) [24], can be performed in the embedding space
directly or in some modified embedding spaces.

Taking PCA as an example, when command-line embed-
dings are utilized, PCA can be applied to detect anomalies by
evaluating the reconstruction error defined as follows:

LPCA(t) = ∥WTWf(t)− f(t)∥22, (1)

where W is a p × q projection matrix which could map
the q-dimensional command-line embedding f(t) to a more
compact space of dimensionality q > p. There exist several

different ways of obtaining the command-line embedding
f(t) [16], [10], and one can simply perform average pooling
to aggregate information in all token embeddings of the
command line. The PCA projection matrix W can be easily
obtained via singular value decomposition (SVD) [24].

Certain intrusions can be successfully detected using such
an unsupervised method. For instance, “masscan * -p
0-65535” that scans all ports associated with an IP address
(which is replaced with a “*” symbol for anonymity reasons)
shows a very high reconstruction error of roughly 230. With
such a high reconstruction error, it emerges in the top-10
highest rated command lines among 10 million test samples.
Nevertheless, we also observed that a non-negligible set of the
test samples show high reconstruction error only on account of
their complex arguments or inferior user habits of command-
line interactions, e.g., the “mv” command followed by a
very large number of complex filenames and the “echo”
command followed by long and weird (yet benign) texts, e.g.,
“a...ab...bc...”. These command lines are somehow
not common, in comparison with normal user behaviors that
only move a very limited number of files at a time and
echo human-understandable texts, yet they are NOT related to
intrusions or attacks to the best of our knowledge and should
be classified into benign behaviors.

IV. A BIT SUPERVISION IF POSSIBLE

As has been discussed, despite its merit in simplicity,
unsupervised anomaly detection sometimes suffers from gaps
between “abnormal yet benign” human behaviors and man-
ually defined intrusions. That is, command-line operations
detected by AI models without any sort of supervision may
inevitably include a large number of abnormal yet benign
user operations. To address this, one can consider ways of
incorporating some amount of supervision and knowledge, if
available, to help AI better identify what are adverse behaviors
and intrusions that should be paid attention to.

Supervision may come from a variety of sources, though
all very noisy [14] in general, e.g., alerts from commercial
IDSes and alerts triggered by off-the-shelf hand-crafted rules
proposed by professionals. Such noisy supervision can be
provided in a black-box manner by querying the commercial
IDSes and writing regular expression, respectively, just for
labeling a number of command lines.

Given a set of labeled data {(ti, yi)}, in which yi being 1
or 0 indicates the command line ti being labeled to be related
to an intrusion or not, we consider several different ways of
incorporating supervision, as follows.

A. Reconstruction-based tuning

First, we can follow the formulation of PCA-based unsu-
pervised anomaly detection to compute W and reconstruction
errors. Then we tune learnable parameters in f(·) to encourage
intrusion-related command lines in the labeled dataset to show

high reconstruction errors while the others show low errors,
i.e., f(·) is optimized to minimize:

LRecons = − log

∑
i LPCA(ti)yi∑
i LPCA(ti)

. (2)

By minimizing the loss in Eq. (2), the reconstruction error (i.e.,
LPCA) of intrusion-related command lines is explicitly en-
couraged to be large, and the reconstruction error of the other
samples is constrained to be relatively small. The optimization
of f(·) using Eq. (2) and a fixed W can be accomplished via
backpropagation and stochastic gradient descent, just as in the
pre-training phase. Once the optimization of f(·) converges,
we obtain a new f(·) function. We then re-compute the
projection matrix W using updated command-line embeddings
produced by the new f(·), and, afterwards, the parameters
of f(·) can further be updated via minimizing Eq. (2) with
the new W . Such an alternative optimization process of
updating f(·) and W is performed back and forth until final
convergence is achieved. This method is called reconstruction-
based tuning in our paper, since its training objective contains
the reconstruction errors.

B. Classification-based tuning

As our second choice for incorporating supervision, we
adopt probing [22], which places a shallow classification head
on top of the “[CLS]” embedding produced by the pre-trained
command-line language model. Given the annotated dataset
{(ti, yi)}, we tune the head for classifying command lines
correctly, i.e., to encourage the output of the classification
head to be aligned with yi, while keeping the backbone frozen.
This method is classification-based tuning. The optimization
objective for achieving the goal is:

LClassif = −
∑
i

log p(yi|ti; θ), (3)

where p(·|·; θ) indicates the likelihood of an input command
line being classified into be intrusion-related or not.

C. Multi-line Classification

It is sometimes insufficient to spot malicious behaviors only
by investigating a single command line. For instance, we
can easily tell that “wget -c http://*/* -o python”
followed by “python”, should be paid attention to, because
the two command lines download a suspect file from the
internet and rename it to “python” before executing. By
contrast, if analyzing them one by one, both command lines
may seem less malicious, and it will become more difficult
to judge even for practitioners. On this point, we further
try multi-line classification-based tuning. More specifically,
for classifying a particular command-line operation, several
command lines in the most recent past from the same user are
additionally served for reference, if their execution time is not
too long ago. These command lines are concatenated with a
shell command separator “;” before being fed into the model,
and the model is then tuned similarly with supervision.

D. Retrieval-based method

In addition to these tuning-based methods, we further con-
sider retrieval-based detection to utilize the supervision and the
command-line language model without any tuning. Generally,
the k-nearest neighbors algorithm (kNN) [4] shall be the first
to be tried. Indeed, we can perform kNN in the embedding
space of the model. Since it is a non-parametric method, it
demands no tuning of the pre-trained model. In particular,
for each test command line, if the majority of its k nearest
neighbors in the training set have been annotated as malicious
by the supervision source, then one may consider the test
sample to be malicious as well. By contrast, if not, then it
is treated as benign by the method. The prediction score of
such a method is the average similarity of those (known to
be) malicious neighbors and the test sample. Although such a
method has been widely adopted in other scenarios, we would
like to mention that it is not suitable to our intrusion detection
application, as supervision from the commercial IDSes or
hand-crafted rules is very noisy. It is probable for the source of
supervision to mislabel a malicious command line as benign.
Therefore, even though all the k neighbors in the training set
of a test sample have been labeled as benign, it is still probable
that the test sample is in fact malicious. In order to tackle this
problem, we modify the method to some extent, and compute
the average similarity between each test sample tj and its k
malicious and nearest training neighbors as its intrusion score
oRetri
j . According to experiments, such an innovation leads to

obvious performance gains for the retrieval-based method in
handling intrusion detection, owing to relief of the negative
impact of label noise.

V. INTRUSION DETECTION EXPERIMENTS

Data. We collected command-line logs in a production
cloud service. We logged the command lines of all the users
on ∼ 100000 machines for a week (from May 1st to May
7th, 2022) as the training set, and data from May 29th to
May 31st as the test set. The training and test set contains 30
million and 10 million samples, respectively. The disc space
taken by the raw training and test files of command lines is
10.5GB and 4.6GB, respectively. Bashlex1 is utilized to parse
the command line data as described in Section II-A. Labels
used for supervised fine-tuning came from a commercial IDS,
developed by a Fortune Global 500 company and widely
deployed in many cloud services. Since there exist many
duplicate samples in the test set, and, in order to make
the evaluation more effective and more reasonable, we de-
duplicate the test set before calculating the concerned metrics
to avoid focusing only on common threats in evaluation.

Implementation details. The architecture of our command-
line language model for experiments is the same as that of
BERT-base [5], i.e., it involves 12 transformer blocks, and
in each transformer block there are 12 attention heads and
the hidden size is 768. BPE is used for tokenization and
the vocabulary size is set to 50 000. All command lines

1https://github.com/idank/bashlex

that exceed the maximum allowed number of tokens, i.e.,
1024, will be trimmed before being fed into the model. For
classification-based tuning, either processing a single com-
mand line or temporarily contiguous multiple command lines
as model input(s), we need a classification head to process the
“[CLS]” token embedding obtained from the backbone for
final classification. In our experiments, the classification head
is a two-layer perceptron initialized by Kaiming’s method [6],
and it is tuned with a learning rate of 5e-5 for 5 epochs using
AdamW, with the language model being frozen. The multi-line
method leverages three temporally contiguous command lines
and concatenates them as a single input for model processing.
For reconstruction-based tuning, as has been described in
Section IV-A, we obtained W using SVD each time f(·)
has been fine-tuned, and f(·) was fine-tuned by minimizing
Eq. (2) once the matrix W was updated. The process was
repeated continuously until convergence, and, in general, we
found that repeating the process five times suffices. We let 95%
of components to be kept by PCA for reconstruction-based
tuning, and, for retrieval, we performed 1NN. That is, the
similarity between each test sample and its nearest malicious
sample in the training set is adopted as its intrusion score.

A. Quantitative Analyses

It is of interest to evaluate an IDS from two perspectives: 1)
how many intrusions that have not yet been confirmed by the
source of supervision, i.e., an existing commercial IDS, can be
successfully detected by our IDS; 2) how well does the IDS
perform on detecting all intrusions, including those that have
already been previously confirmed by the commercial IDS.
The former focuses on “out-of-box” intrusions while the later
further takes “in-box” intrusions into consideration. Table I
and II compare all methods (introduced in Section IV) that
use supervision. PO@v in the table indicates the precision
of the top out-of-box predictions of the model. If v = 100,
we calculate the precision of top-100 out-of-box predictions
of each method. In addition to PO@v, we also evaluate the
precision when each method is able to recall u (for u ≈ 100%)
of all intrusions detected by the commercial IDS. This is
achieved by setting a specific intrusion detection threshold for
each method according to its prediction scores. PO and PO&I

calculate the out-of-box precision and overall precision of each
method, respectively, under such a threshold.

In Table I, reconstruction-based tuning, classification-based
tuning, and the retrieval-based method all obtain reasonably
high PO&I, when setting a threshold that guarantees almost
all in-box intrusions (that have already been found out by the
commercial IDS) show higher scores than it.

For detecting out-of-box intrusions that should have been
spotted by the commercial IDS, classification-based model
tuned on single command line data shows a final PO@100
of 100%, a PO@1000 of 94.9%, a PO of 83.2% and a
PO&I of 99.4% on average, with some variance over multiple
runs. Tuning on multi-line data leads to even more superior
performance on the top predictions (with a PO@100 of 100%
and a PO@1000 of 99.8%). The superiority of multi-line

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS. AVERAGE

PERFORMANCE OVER FIVE RUNS IS REPORTED TOGETHER WITH THE
STANDARD DERIVATION (EXCEPT FOR THE RETRIEVAL-BASED METHOD

WHICH DOES NOT REQUIRE FINE-TUNING AND THUS ONLY A SINGLE RUN
OF TEST WAS PERFORMED FOR IT).

PO PO&I

Reconstruction 0.913± 0.050 0.999± 0.000
Classification 0.832± 0.070 0.994± 0.003
Classification (multi) - -
Retrieval 0.569 0.892

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON THEIR TOP-100

AND TOP-1000 OUT-OF-BOX PREDICTIONS.
PO@100 PO@1000

Reconstruction 0.984± 0.032 0.535± 0.092
Classification 1.000± 0.000 0.949± 0.003
Classification (multi) 1.000± 0.000 0.998± 0.001
Retrieval 0.970 0.569

classification over single-line classification in their top predic-
tions indicates that in-context information is indeed beneficial.
Note that, after de-duplication, the number of test samples is
different for the single-line and multi-line test set. On account
of this, we do not report the performance in PO and PO&I

for multi-line classification, since it should be unfair and its
results should be uncomparable to others.

The reconstruction-based and retrieval-based methods seem
less effective in the sense of achieving high precision on
out-of-box predictions, comparing with classification-based
tuning. The results show that the two methods fail to generalize
to out-of-box samples as well as classification-based tuning,
on account of overfitting. Reconstruction-based tuning shows
a PO@1000 of 53.5%, while its PO is even higher than it. In
general, reconstruction-based tuning leads to very high scores
for all in-box intrusions, and there are not many (roughly
200 on the test set, to be more specific) out-of-box results
that could show higher or even comparable scores, while
on which the prediction precision is also low. The retrieval-
based method outperforms reconstruction-based tuning in
PO@1000, yet shows lower PO&I. In contrast to these two
methods, classification-based tuning shows reasonably good
performance in all metrics.

B. Comparison with the Commercial IDS

In this subsection, we attempt to compare classification-
based tuning (which is quantitatively the best among all the
developed methods based on our pre-trained command-line
language model) to other methods. We mainly compare to the
commercial IDS, which is also the source of supervision, since
most existing learning-based methods in the literature focus on
detecting new users, which is not comparable in our testing
environment.

We propose to compare in the sense of an F1-measure which
calculates the harmonic mean of precision and recall. The
F1-measure only requires fixed final decisions of the model,
making it possible to directly compare the decision accuracy
of classification-based tuning and that of the commercial IDS.
The evaluation of recall requires some further effort in addition

to the evaluation in Section V-A, as we will need to know the
number of all positives. For handling this, we try to compare
the developed classification-based tuning with the commercial
IDS on a set of command lines where in-box and out-of-
box intrusions highly likely exist, such that the number of
all positives can be reasonably estimated. Specifically, we
opt to evaluating on the set of all predicted positive of our
method. Such a set also contains almost all predicted positives
of the commercial IDS. We note that comparison on such a
set is not entirely fair (as the test samples are chosen from a
subset of samples on which classification-based tuning makes
confident predictions), yet it is the best we can try to make
the comparison possible on a common benchmark. Comparing
with using all test samples, using such a subset leads to over-
optimistic recall for both compared methods, given limited
resource for test sample labeling.

As has been shown in Table I, given the specific threshold,
classification-based tuning should show an average overall
precision of 99.4% on the set of its predicted positives. We
also know that its overall recall on this set should be 100%,
since all true positives in the set, either in-box or out-of-box
can all be successfully spotted by the method. Therefore, the
F1-measure of such a method is 99.7%.

Let us assume that the commercial IDS can spot S intrusions
on the whole test set, and there are in total T test samples in the
predicted positive set of our method and PO = x. Considering
that the commercial IDS is only capable of detecting in-
box intrusions, it misses on all the xT − xuS out-of-box
intrusions and we can obtain its recall 97.4% by approximately
calculating uS/(xT + u(1− x)S). As we have assumed that
the precision of the commercial IDS is 100%, it achieves
an F1-measure of 98.7%. Obviously, the classification-based
tuning outperforms the commercial IDS in recall and is slightly
inferior in precision, and, overall, thus it is superior in the
sense of the F1-measure. In comparison with the commercial
IDS, our solution leverages AI and machine learning and, in
particular, large-scale pre-training on unlabeled data, which
endows superior generalization. Benefiting from superior gen-
eralization ability to out-of-box cases, out method leads to a
higher F1-measure.

Comparing our IDS to other commercial IDSes (in addition
to the one that provides supervision) is challenging, since
different IDSes define malicious behaviors differently and it
makes little sense to compare them in the context of the
proposed evaluation metrics. Given noisy supervision from the
commercial IDS, we have gained considerably superior per-
formance to that of the supervision source, which confirms the
effectiveness of our command-line language model pre-trained
on massive data, and we will consider other commercial IDSes
as the source of supervision for possible comparison in future
work.

C. Qualitative Analyses

Generalization. The right half of Table III reports some
out-of-box command lines that were failed to be noticed by
the commercial IDS but show high intrusion scores using

TABLE III
IN-BOX-EXAMPLES VS OUT-OF-BOX EXAMPLES.

In-box Out-of-box

nc -lvnp * nc -ulp *
masscan * -p 0-65535 --rate=1000 >> tmp.txt sh /root/masscan.sh * -p 0-65535
bash -i >& * 0>&1 java -cp tmp.jar "bash=bash -i >& *"
export https_proxy="http:*" export https_proxy="socks5:*"

java -jar tmp.jar -C "bash -c {echo,*} \
{base64,-d} {bash,-i}"

python3 tmp.py -p "bash -c {echo,*} {base64,-d} \
{base,-i}"

classification-based tuning, while related in-box samples are
provided on the left as references. As can be seen, attackers
may decode from base64 and execute suspect commands
camouflaged under different programming languages, yet the
commercial IDS may succeed with java but failed with
python3. This case shows the effectiveness of our method
in generalizing across interpreters of different programming
languages. From an example of the command nc, we can
also observe the generalization ability of the proposed method
across command flags. It avoids the failure case of “nc -ulp

*” which is functionally very similar to “nc -lvnp *” and
should have been classified into the same class (as malicious or
benign). The “export ...” example shows how generalization
in arguments could help.

Preference of different methods. By comparing the true
positives of developed methods, we found that they are sen-
sitive to different out-of-box intrusions. Classification using
single command lines as inputs tends to first capture intrusions
whose purpose is to bind and reverse shells, e.g., the command
lines in Table III with “nc”, while multi-line classification, as
has been discussed, is capable of detecting malicious behaviors
involving a sequence of suspect command-line operations.
Moreover, higher scores should be assigned to command-line
sequences involving multiple sensitive operations than that
involving only one suspect operation. Reconstruction-based
tuning performs better in detecting intrusions that decode
from base64 and execute suspect commands, e.g., “echo *
| bash64 -d | bash -i”, where the symbol “*” indi-
cates a bash64-encoded operation which is not shown for
security and privacy reasons. We conjecture that this is due
to the fact that bash64-encoded operations are difficult to
be reconstructed. As can be seen, these methods complement
each other, and an ensemble of all these methods can further
boost the out-of-box intrusion detection performance, which
should be explored in future work.

VI. RELATED WORK

Learning-based intrusion detection. AI-based intrusion
detection methods in the literature are mainly designed for
small data and focus mostly on detecting new users of the
command-line interface. For instance, Lane and Brodley [8]
proposed to build a profile that enumerates command names
and flags in historical operations for each user and evaluated
the similarity of a command operation to all profiles in order
to determine whether it is abnormal or not. Huang et al. [7]
further advocated to align all sequence of commands before
creating the profile of each user adopting hidden Markov

models. More recently, Liu and Mao [12] constructed a
sequence-to-sequence model on the basis of recurrent neural
networks to predict following command-line behaviors given
previous ones, and issued the uncertainty and fluctuation of
user behavior by comparing the difference in user profiles.
These methods require abundant data for each possible user
and are difficult to quickly adapt to new benign users which,
however, widely exist in cloud environments. Moreover, these
methods only took partial information of each command line
into account. Specifically, Lane and Brodley’s and Liu and
Mao’s only utilize command names and flags while Huang et
al.’s only utilizes command names.

Language models. Often trained in a self-supervised
manner on a huge amount of data, language models are be-
coming increasingly popular. Representatives of these models
like BERT [5], RoBERTa [13], GPT [2], and CLIP [15]
have dominated certain applications. Taking BERT as an
example, it has been widely used in English-based query
on the Google search engine [19], and it has renovated the
pipeline of model training in a variety of NLP applications.
Despite the remarkable successes, there is little work that
thoroughly discusses self-supervised learning and language
models for intrusion detection and cloud security. This work
encourages to marry language models to IDSes and compares
different intrusion detection methods based on a command-line
language model. Somewhat related, Setianto and Tsani [21]
proposed to fine-tune a pretrained GPT model on a question
answering task, where the context is shell commands and the
answer is the Unix utility to automatically parse command
lines from honeypots, which is possible to be incorporated into
future IDSes. It shows another potential way of using language
model for IDSes, although it does not target at improving the
intrusion detection precision and recall directly.

VII. CONCLUSIONS

In this paper, we aim at adopting AI to intrusion detection
at scale. Equipped with an advanced command-line language
model model, several different methods have been proposed
for achieving remarkable in-box and out-of-box intrusion
detection performance. The effectiveness of our IDS is verified
on tens of millions of command lines collected in a produc-
tion cloud environment. Under the premise of successfully
recalling nearly all in-box intrusions, our method is capable of
detecting a reasonably large number of out-of-box intrusions
with a favorable precision. Qualitative analyses have also been
performed to shed light on the reason of the effectiveness of
our method.

REFERENCES

[1] Léon Bottou et al. Online learning and stochastic approximations. On-
line learning in neural networks, 17(9):142, 1998.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[3] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and
Randal E Bryant. Semantics-aware malware detection. In 2005 IEEE
symposium on security and privacy (S&P’05), pages 32–46. IEEE, 2005.

[4] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27, 1967.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[7] Lin Huang and Mark Stamp. Masquerade detection using profile hidden
markov models. computers & security, 30(8):732–747, 2011.

[8] Terran Lane and Carla E Brodley. An application of machine learning
to anomaly detection. In Proceedings of the 20th national information
systems security conference, volume 377, pages 366–380. Baltimore,
USA, 1997.

[9] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical
framework for back-propagation. In Proceedings of the 1988 connec-
tionist models summer school, volume 1, pages 21–28, 1988.

[10] Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and
Lei Li. On the sentence embeddings from pre-trained language models.
arXiv preprint arXiv:2011.05864, 2020.

[11] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
2008 eighth ieee international conference on data mining, pages 413–
422. IEEE, 2008.

[12] Wei Liu, Yu Mao, Linlin Ci, and Fuquan Zhang. A new approach
of intrusion detection with command sequence-to-sequence model. In
Advances in Intelligent Data Analysis and Applications, pages 169–182.
Springer, 2022.

[13] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[14] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and
Ambuj Tewari. Learning with noisy labels. In Advances in neural
information processing systems, 2013.

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[16] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[17] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing internal representations by error propagation. Technical report,
California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[18] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola,
and Robert C Williamson. Estimating the support of a high-dimensional
distribution. Neural computation, 13(7):1443–1471, 2001.

[19] Barry Schwartz. Google: Bert now used on almost every en-
glish query, [Accessed August, 2022]. https://searchengineland.com/
google-bert-used-on-almost-every-english-query-342193.

[20] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural ma-
chine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909, 2015.

[21] Febrian Setianto, Erion Tsani, Fatima Sadiq, Georgios Domalis, Dimitris
Tsakalidis, and Panos Kostakos. Gpt-2c: a parser for honeypot logs
using large pre-trained language models. In Proceedings of the 2021
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pages 649–653, 2021.

[22] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the
classical nlp pipeline. arXiv preprint arXiv:1905.05950, 2019.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[24] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular
value decomposition and principal component analysis. In A practical
approach to microarray data analysis, pages 91–109. Springer, 2003.

[25] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A survey
on malware detection using data mining techniques. ACM Computing
Surveys (CSUR), 50(3):1–40, 2017.

