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Abstract
Large Language Models (LLMs) have revolutionized software
development, enabling the creation of AI-powered applica-
tions known as LLM-based agents. However, recent studies
reveal that LLM-based agents are highly susceptible to taint-
style vulnerabilities, which allow malicious prompts to exploit
security-sensitive operations. These vulnerabilities pose se-
vere threats to the security of agents, potentially allowing
attackers to take over the entire agent remotely.

In this paper, we propose a novel directed greybox fuzzing
approach, called AgentFuzz, the first fuzzing framework for
detecting taint-style vulnerabilities in LLM-based agents.
AgentFuzz consists of three key phases. First, AgentFuzz
leverages the LLM to generate functionality-specific seed
prompts in the form of natural language. Second, AgentFuzz
utilizes a multifaceted feedback design to assess seed quality
from both semantic and distance levels, prioritizing seeds with
higher quality. Finally, AgentFuzz employs functionality and
argument mutator to refine seeds and trigger vulnerabilities
effectively. In our evaluation against 20 widely-used open-
source agent applications, AgentFuzz identified 34 high-risk
0-day vulnerabilities, achieving 33 times higher precision than
the state-of-the-art approach. These vulnerabilities encompass
serious threats like code injection, impacting 14 open-source
agents, with 7 of them having over 10,000 stars on GitHub.
To date, 23 CVE IDs have been assigned.

1 Introduction

Large Language Models (LLMs) have demonstrated remark-
able advancement in various downstream tasks, such as code
generation [41,43], question answering [29,39,60], etc. Nowa-
days, developers are actively integrating LLMs to build AI-
powered applications, which are widely known as LLM-
based agents [65, 68]. These emerging LLM-based agents
could understand natural language instructions, perceive exter-
nal environments, and intelligently carry out various actions.

Currently, the ecosystem of LLM-based agents has rapidly
evolved and demonstrates various product forms. A common

mode involves deployment on local devices such as desk-
top software [12], where users can interact directly with the
agent to intelligently operate the device. Alternatively, agents
may be deployed on centralized remote servers and accessed
through websites, allowing users to engage with the agent
remotely [24]. These agents typically handle essential tasks,
such as executing code and processing sensitive data. For
instance, LLM platforms like Coze and GPT host a variety
of agents [4, 7], attracting millions of users [78] and storing
vast amounts of user privacy data, underscoring the growing
importance of their security.

However, sadly, existing studies reveal that these LLM-
based agents are vulnerable to serious security threats (e.g.,
prompt injection [75]), which could potentially cause infor-
mation leakage, malicious code execution, and so on. Among
these, taint-style vulnerabilities [49, 54], a well-established
concern in traditional code security research [46, 51], are un-
doubtedly among the most critical types that require attention.
These vulnerabilities stem from developers’ over-reliance
on LLM outputs and failure to sanitize harmful content be-
fore passing it to security-sensitive operations (SSO). This
oversight allows malicious payloads embedded in prompts to
flow into SSOs, triggering vulnerabilities like code injection
and allowing attackers to achieve local privilege escalation
or even gain remote control of the agent. While recent stud-
ies [49] have shed light on detecting taint-style vulnerabilities
in agents, their approaches such as using static analysis to
identify source-to-sink call chains still suffer from high false-
positive and false-negative rates.

Therefore, in this work, we are highly motivated to design
a vulnerability detection approach that can effectively vet
the security of real-world popular LLM-based agents against
taint-style vulnerabilities. Considering the fact that taint-style
vulnerabilities can only be triggered at specific sinks, directed
fuzzing has long been embraced for its ability to target testing
efforts towards given code locations, thereby increasing the
likelihood of discovering taint-style vulnerabilities. Hence,
it should be an appealing solution to migrate conventional
directed fuzzing techniques to LLM-based agents. However,
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it is definitely a non-trivial task, due to the complex nature of
LLM-based agents (detailed as follows):

• C1: How to generate functionality-specific seeds in the form
of natural language? Unlike traditional applications with
structured inputs, LLM-based agents receive natural lan-
guage prompts, which the LLM interprets to invoke specific
functionalities. Traditional fuzzing techniques are designed
for structured data and struggle to generate natural language
seed prompts for the diverse functionalities of agents.

• C2: How to prioritize high-quality seeds during the fuzzing
procedure to boost the fuzzing efficiency? Prioritizing high-
quality seeds more likely to trigger the sink can improve
fuzzing efficiency. Traditional fuzzing techniques use met-
rics like CFG distances to prioritize seeds, assuming seeds
closer to the sink are more promising. However, this heuris-
tic faces challenges in agents due to flexible code features,
and distance alone fails to capture the semantic gap between
seeds, making it less reliable for evaluating seed quality.

• C3: How to effectively mutate seeds to trigger the taint-
style vulnerability? Once high-quality seeds are selected,
the next step is to mutate them to trigger the vulnerabil-
ity. To achieve this, the seed must possess specific natural
language semantics to invoke functionality containing the
sink. Traditional mutators, however, are designed for byte-
level mutations and fail to adjust the semantics of the seed.
Moreover, various constraints are typically present along
the path to the sink in the agent’s code. Identifying and
mutating the specific parts of the prompt that can satisfy
these constraints presents a significant challenge.

In this paper, we propose a novel directed greybox fuzzing
approach, called AgentFuzz, the first fuzzing framework for
detecting taint-style vulnerabilities in LLM-based agents. Our
approach is motivated by several key insights that help ad-
dress the proposed challenges. First, agents use various com-
ponents (e.g., tools) to process actions. The class and method
names of these components encompass rich natural language
semantics that reflect their functional purpose, helping gener-
ate functionality-specific seed prompts. Second, high-quality
seeds share semantics aligned with the functionality of the vul-
nerable component and meet the necessary code constraints,
enabling the agent to invoke specific vulnerable components
and trigger the vulnerability. Third, the semantics embedded
in the method and class names of vulnerable components
serve as guidance for functionality mutations. Additionally,
the overlap between the user prompt and the runtime argu-
ment of the vulnerable component helps identify the specific
section of the prompt that needs mutation to meet constraints,
enabling deterministic mutations.

Based on these insights, we design AgentFuzz with three
main phases. In the first phase, AgentFuzz extracts call
chains leading to predefined sinks such as SQL injection and
code injection. It then employs an LLM-assisted approach
to interpret the natural language semantics embedded in the

method and class names within these chains, thereby generat-
ing functionality-specific seed prompts. In the second phase,
AgentFuzz evaluates seed quality through a multifaceted feed-
back strategy, prioritizing seed based on its execution traces,
semantic consistency, and CFG distances to the sink. This ap-
proach helps efficiently focus on the most promising seed for
triggering vulnerabilities. In the third phase, AgentFuzz em-
ploys functionality and argument mutators to refine the seed.
It autonomously selects the most suitable mutator based on
runtime feedback, thus generating semantically-correct and
constraint-valid seed prompts. After the mutation, AgentFuzz
uses predefined oracles to determine whether the mutated
prompts successfully trigger the vulnerabilities.

To demonstrate the effectiveness and performance of
AgentFuzz, we evaluated it on 20 widely used open-source
agent applications that provide web services, which are more
prone to attacks due to their exposure and potential impact
when exploited. Our evaluation shows that AgentFuzz suc-
cessfully identified 34 0-day taint-style vulnerabilities (24 of
which were undetected by existing approaches), achieving
a precision rate of 100%, outperforming the state-of-the-art
approach LLMSmith [49] by 33 times. These vulnerabilities
include high-risk issues such as code injection and SQL injec-
tion, affecting 14 open-source agents, 7 of which have over
10k stars on GitHub. All 34 vulnerabilities were confirmed
to be exploitable. The discovered vulnerabilities pose severe
security risks, enabling attackers to take full control of the
servers and potentially causing significant financial losses.
Considering the substantial security impact, we responsibly
reported them to the developers of the affected agents. As of
now, 23 CVE IDs have been assigned.

In summary, the paper makes the following main contribu-
tions:

• We propose the first directed fuzzing approach to detect
taint-style vulnerabilities for LLM-based agents.

• We have developed a prototype of this approach, named
AgentFuzz, which effectively detects taint-style vulnerabil-
ities in real-world agent applications.

• We evaluated AgentFuzz on 20 real-world popular agent
applications. AgentFuzz successfully identified 34 0-day
vulnerabilities. As of now, these vulnerabilities have been
assigned 23 CVE IDs.

2 Problem Statement

In this section, we present an overview of the LLM-based
agents (in §2.1) and define the taint-style vulnerabilities
within them (in §2.2).

2.1 LLM-based Agents
With the rapid advancement of LLMs, LLM-based agents
have undergone significant development. By leveraging the
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Figure 1: Simplified workflow of LLM-based agents.

powerful generative abilities of LLMs and various compo-
nents such as externally provided tools, agents can com-
prehend end users’ natural language instructions (i.e., user
prompts) and handle more complex tasks beyond the capabili-
ties of a standalone LLM [31]. In practice, LLM-based agents
are frequently employed to perform critical tasks like execut-
ing code, handling sensitive data, and automating business
workflows [65], all of which involve invoking various sensi-
tive functions. A notable example is DB-GPT [70], which han-
dles data processing tasks and accesses substantial amounts
of user data, enabling it to achieve complex data analysis.

Figure 1 illustrates the workflow of LLM-based agents.
Specifically, (1) end users interact with the agent through user
prompts, e.g., “calculate the result of 1+1.” (2) The agent pro-
cesses the user prompt and assembles it with system prompts
defined by the developer. The system prompt typically speci-
fies the return format for the LLM, enabling the agent to effec-
tively interpret the LLM’s response. The assembled prompt
is then sent to the LLM to interpret the user’s intent and plan
the corresponding actions. (3) The agent leverages the out-
put parser component to analyze the response according to
the agreed-upon format and extract the action planned by the
LLM. It then adheres to these instructions to invoke specific
components and execute the intended action, e.g., invoking
the calc tool to compute 1+1. (4) Finally, the agent returns
the result of the action to the user.

2.2 Taint-style Vulnerability in Agents
Taint-style vulnerabilities are a widespread type of flaw in
traditional applications and consistently rank high on the
OWASP Top Ten list [14, 15]. These vulnerabilities typi-
cally occur when malicious user input is passed into security-
sensitive operations without proper validation, potentially
leading to critical issues such as code and SQL injection.

2.2.1 Real-world Example

We use a real-world code injection vulnerability (i.e., CVE-
2024-5**93, anonymized for ethical reasons) that we dis-
covered in a popular open-source agent to demonstrate the
proposed taint-style vulnerability in agents. Figure 2 presents
a simplified code snippet illustrating the vulnerability. To ex-
ploit this vulnerability, the attacker sends a malicious prompt

Tools = [ ElasticSearch(), WebSearch()，
                              ElasticsearchPermissionCheck() ]

@router.post('/chat')

def assistant_agent(prompt):                    # User input    

    resp = llm.invoke(OpenAI(), prompt)  # LLM response

    # tool = ElasticsearchWithPermissionCheck()

    tool = Tools.get(resp["tool"])               # Get tool

    # resp["content"] = "source_doc:print(1)"                 

    result = tool.run(resp["content"])         # Invoke tool with

            # indirect call    

Class ElasticsearchPermissionCheck():

    def similarity_search(self, content):

        # content = "source_doc:print(1)"        

        if "source_doc" in content:                   

            return eval(content.split(':')[1])     # eval('print(1)')

1

2

3

4

5

6

7

8

9

10

Use Elasticsearch for a similarity search with permission 

checks to find documents with 'source_doc:print(1)'.

③   

②

①

④    

Attack Prompt Payload

Figure 2: A real-world vulnerability example from a popular
open-source agent (the vulnerability has been patched).

to the agent via the web service in lines 2-3 (i.e., source), a
portion of which is returned by the LLM and directly passed
to the eval function in line 10 (i.e., sink) without adequate
sanitization, resulting in code injection.

Technically, the whole vulnerability exploitation process
involves four steps. ❶ The attacker sends an HTTP request
with a crafted prompt to the agent via its web API (lines
2-3), e.g., http://agent/chat?prompt=${prompt}. ❷ The
agent forwards the attack prompt to the LLM, which plans
and generates the appropriate actions for the agent to ex-
ecute (line 4). Given that the intent of the attack prompt
is to search a document with permission checks, the LLM
selects the ElasticsearchPermissionCheck tool from the
three tools defined in line 1 and sends it back to the agent.
❸ The agent processes the LLM’s response and executes the
specified action. As shown in line 6, the agent invokes the
ElasticsearchPermissionCheck tool via an indirect call
(i.e., run method). ❹ The ElasticsearchPermissionCheck
tool executes with “source_doc:print(1)” as its argu-
ment, which actually is a specific string in the user prompt
and parsed from the LLM response. As illustrated in lines
9-10, since the argument meets the if-condition, it is pro-
cessed by the split method and flows into the sink, i.e.,
eval(“print(1)”), triggering a code injection vulnerability.

2.2.2 Threat Model

In our threat model, we assume agents and their developers
are benign and assume their running environments are not
compromised. We consider attackers to be malicious users
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who possess the capability to interact with an agent under
normal operational conditions. By sending crafted prompts to
the agent, an attacker could control the execution of a sensi-
tive function (i.e., sink) and gain unauthorized privileges. The
threat model covers two kinds of attackers: remote attackers
and local attackers. Remote attackers interact with the agent
through its web service, using web APIs to input malicious
prompts and gain control of the server by executing harmful
code. Such web services are common in LLM-based agents.
For example, popular agents like AutoGPT [2] and Dify [6]
provide users with web APIs to input prompts. Local attack-
ers operate on the same device as the agent, gaining local
access to interact with high-privilege agents through mali-
cious prompts. These prompts can trigger sensitive functions
in locally deployed agents (e.g., MobileAgent [64]), leading
to privilege escalation and other malicious activities.

Note that though an agent may run in an isolated environ-
ment (e.g., deployed in a Docker container), taint-style vul-
nerabilities still pose significant security risks. On one hand,
the attacker could leverage a code execution vulnerability to
steal sensitive data within the agent’s running environment
(e.g., the LLM API key used by the agent may be leaked to
allow unauthorized requests to the LLM, causing financial
losses to the maintainers of the agent). On the other hand,
the attacker could use these vulnerabilities to further compro-
mise the agent’s integrity and availability. For example, the
attacker could access the database and delete critical user data,
or launch a DoS attack to disrupt the agent’s functionality.

3 Related Work

In this section, we review related works in taint-style vulnera-
bility detection and summarize their limitations to motivate
our research.
Vulnerability Detection of LLM-based Agents. Taint-style
vulnerabilities pose a significant threat to the security of
agents, highlighting the critical need for effective detection
and mitigation strategies. However, to the best of our knowl-
edge, no existing research has introduced a fully automated
and accurate approach to detect taint-style vulnerabilities in
LLM-based agents. The most relevant work, LLMSmith [49],
applies static analysis techniques to identify call chains that
start from user-level APIs and terminate at sink callsites,
reporting these chains as vulnerabilities. Nevertheless, its
coarse-grained call graph analysis, along with the prevalence
of indirect calls in Python, leads to high false positive and false
negative rates. Other studies mainly emphasized threats such
as prompt leaking [45,47,55] and jailbreaking [56,71,72,79],
which represent entirely different vulnerability patterns.
Taint-Style Vulnerability Detection. In fact, taint-style
vulnerability detection has been studied extensively for
decades [46]. Existing works can be broadly categorized into
static and dynamic approaches.

Existing static analysis approaches [30, 46, 48, 51] treat

variables representing user inputs as sources and parameters
of security-sensitive operations as sinks. They then perform
dataflow analysis to detect potential vulnerabilities by iden-
tifying source-to-sink paths. However, these methods have
significant limitations. Firstly, they cannot generate proofs of
concept (PoC) to verify exploitability, leading to a high rate
of false positives. Secondly, agents are typically developed
in Python, a dynamically typed language that allows devel-
opers to use indirect calls and other advanced techniques to
implement complex functionalities more easily. While these
features enhance flexibility, they complicate static analysis,
increasing false positives and missed detections.

Existing dynamic approaches [1,37,40,58,61], on the other
hand, typically employ fuzzing techniques to detect vulner-
abilities (i.e., fuzzers). Specifically, fuzzers generate initial
seeds that conform to the target application’s input format
and mutate them using mutation strategies such as bitflip [1].
They then leverage evidence within the code (e.g., distance
to sink [32]) to narrow the exploration space and generate
seeds that reach the target sink, triggering the vulnerability.
However, unlike traditional applications with structured in-
puts, agent inputs are prompts that lack a fixed structure and
encompass the entire spectrum of natural language. These
prompts carry rich natural language semantics, empowering
the agent to invoke various functionalities intelligently. Obvi-
ously, traditional fuzzers like AFL [1] cannot generate inputs
with specific semantics or mutate their meaning, thereby fail-
ing to explore the diverse functionalities within agents.

4 Overall Idea

The rapid development of agents and the gaps in existing
works within this field further highlight the urgent need for
an effective approach to detect taint-style vulnerabilities in
agents. Fuzzing techniques, with their high precision and abil-
ity to generate PoCs for vulnerability verification, have greatly
attracted our interest. Moreover, taint-style vulnerabilities are
characterized by a fixed sink in the vulnerable code, meaning
their detection is fundamentally a directed fuzzing task.

Therefore, in this paper, we utilize the Directed Greybox
Fuzzing (DGF) [32] technique to address the problem of
taint-style vulnerability detection in agents. In this section,
we illustrate the challenges encountered and present our key
insights (in §4.1). Then, we introduce our approach overview
for detecting vulnerability within agents (in §4.2).

4.1 Challenges & Insights
Traditional DGF techniques [1, 32, 73] typically comprise the
following three modules. The seed generation module creates
and adds valid seeds to the seed pool. The scheduling module
selects a seed from the seed pool for mutation, after which
the mutation module modifies it and updates the seed pool,
thereby iterating through the entire fuzzing loop.
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Given the success of existing fuzzing techniques, adapt-
ing these well-established approaches to LLM-based agents
seems an appealing idea. However, we argue that directly
applying them to agents presents significant challenges.
Challenge I: How to generate functionality-specific seeds
in the form of natural language? Traditional fuzzing tech-
niques primarily target structured inputs and rely on public
seed datasets [32, 33], which clearly cannot generate the natu-
ral language prompts required by agents. While LLM-driven
methods have shown promise for seed generation [52, 69],
existing works fail to produce functionality-specific prompts
needed to adequately explore the diverse functionalities of
agents (e.g., chat, code generation), thus limiting their effec-
tiveness in fuzzing agent applications.

Solution: To address this, we propose an LLM-assisted
seed generation approach. The key insight is that, as outlined
in Langchain [9], agents utilize various components (e.g., vec-
tor storage and tools) to process actions based on the prompt’s
intent. Developers typically convey the functional purpose
of components through their class and method names, allow-
ing the LLM to interpret their functionality and, based on
the user prompt’s intent, invoke the appropriate component.
As shown in Figure 2, the ElasticsearchPermissionCheck
component’s name conveys clear natural language seman-
tics that describe its functionality. Therefore, we leverage
LLM’s advanced natural language understanding capabilities
to interpret the semantics embedded in components, thereby
generating functionality-specific seed prompts.
Challenge II: How to prioritize high-quality seeds during
the fuzzing procedure to boost the fuzzing efficiency? Seed
scheduling strategies [1, 32, 73] prioritize high-quality seeds
from a vast number of candidates, significantly enhancing
fuzzing efficiency. Common directed fuzzing approaches sug-
gest that CFG distances could serve as valuable feedback for
seed scheduling [32]. That is, seeds whose execution traces
have shorter distances towards the sink are more likely to
trigger the vulnerability, making them higher quality. At first
glance, distance-based scheduling seems applicable to agent
fuzzing, as taint-style vulnerabilities are triggered at specific
sinks, and seeds closer to these sinks should be prioritized.
However, we argue that it is not directly applicable to LLM
agents. The key reasons are two-fold.

❶ Indirect calls. Indirect calls are pervasive in agents,
making it difficult to construct a complete call graph, let
alone a control flow graph. Consequently, static analysis tech-
niques cannot reliably assess the distance to the sink, making
distance-based seed quality evaluation unfeasible. ❷ Semantic
proximity. Even if the distance to the sink is accurately deter-
mined, relying solely on distance still fails to reflect the true
quality of the seed. As shown in Figure 2, although the CFG
distance to the sink may be the same for both ElasticSearch
and WebSearch, ElasticSearch is semantically closer to
ElasticsearchPermissionCheck, which contains the sink.
Thus, seeds invoking the ElasticSearch are of higher quality

than those invoking WebSearch, highlighting the inadequacy
of distance-based evaluation in agent contexts.

Solution: Therefore, to evaluate seed quality in the context
of agents, we propose a multifaceted feedback strategy that
assesses seed quality from both semantic and distance levels.
At the semantic level, a high-quality seed must align with the
functionality of the vulnerable component in terms of natural
language semantics, thereby ensuring LLM can interpret the
prompt’s intent and invoke the target vulnerable component.
At the distance level, the execution trace of high-quality seeds
should reach blocks closer to the sink callsite. As illustrated
in Figure 2, the attack prompt (1) invokes the vulnerable
component through its specific semantics, and (2) reaches
blocks closer to the sink. Unlike existing approaches [49] that
rely on statically constructing complete call chains, which
may fail due to indirect calls. Our approach leverages the call
chain semantics to schedule prompts that dynamically reach
the sink. This direct fuzzing strategy mitigates indirect call
issues and increases the chance of triggering the sink.
Challenge III: How to effectively mutate seeds to trig-
ger the taint-style vulnerability? With high-quality seeds
in hand, triggering vulnerabilities requires the seed prompt
to (1) include specific semantics that invoke the vulnerable
component (e.g., ElasticsearchPermissionCheck) among
various agent components, and (2) satisfy multiple constraints
for the component’s arguments (e.g., ensuring the content
argument includes the string source_doc:).

However, traditional mutators [1, 32, 73] are unable to ad-
dress these requirements. On the one hand, they primarily
focus on random byte-level transformations (e.g., bit flips [1])
rather than mutating the natural language semantics of seed
prompts, thus failing to generate prompts with the specific
semantics required to invoke vulnerable components. On the
other hand, while traditional mutators can solve constraints,
they cannot identify which specific section of the prompt
needs mutation to enable the component’s argument, derived
from the LLM’s response, to satisfy constraints.

Solution: To address this challenge, we designed two mu-
tators. ❶ The functionality mutator refines the seed’s natural
language semantics using the call chain of the vulnerable
component, helping mitigate indirect call issues and generate
prompts that effectively invoke components with the desired
functionality. ❷ The argument mutator solves constraints and
matches the argument’s value to the user prompt through run-
time substring matching, thereby determining which section
of the prompt requires alteration to satisfy these constraints.
This design is based on our observation that, to perform a spe-
cific task, a user prompt typically comprises two key elements:
the action and associated data to be processed. The LLM inter-
prets the action from the prompt and provides the associated
data as arguments to the component, thereby completing the
task. By modifying specific sections of the user prompt, we
can control the arguments passed to the component and adjust
the value of related variables.
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Algorithm 1: Fuzzing Loop
Input: Agent Code, C
Output: Vulnerability PoCs, P

1 S← ExtractSinkCallsites(C)
2 for sink_callsite in S do
3 seed_pool← /0

4 call_chains← StaticAnalyze(sink_callsite)
5 for call_chain in call_chains do
6 initial_seed← GenerateSeed(call_chain)
7 f eedback← Execute(initial_seed)
8 seed_pool← seed_pool∪{seed, f eedback}
9 while not Timeout do

10 seed, f eedback← SelectSeed(seed_pool)
11 mutator← SelectMutator(seed, f eedback)
12 new_seed← Mutate(mutator, seed)
13 f eedback← Execute(new_seed)
14 seed_pool← seed_pool∪{new_seed, f eedback}
15 if VulnOracle(new_seed) == Success then
16 P← P∪{new_seed}
17 break

4.2 Approach Overview

Drawing on the above ideas, we introduce a novel directed
greybox fuzzing approach to effectively detect taint-style vul-
nerabilities within agents. As outlined in Algorithm 1, the
overall fuzzing loop is primarily divided into three phases:
seed generation, seed scheduling, and seed mutation.

Specifically, in the first phase, our approach identifies sink
callsites within the agent (line 1), with each callsite repre-
senting a separate fuzzing loop (line 2). Our approach then
extracts all call chains leading to the sinks and inputs them
into LLM, using the CoT [66] reasoning strategy to generate
functionality-specific seeds (lines 4–6). In the second phase,
our approach inputs the generated seed prompts into the agent
for execution and adds them to the seed pool (lines 7-8). Then,
our approach scores each seed based on three factors (seman-
tic score, distance score, and penalty score) and prioritizes
the seed with the highest score for further mutation (line 10).
In the third phase, our approach uses two mutators to mutate
selected seeds (line 12). For mutator scheduling, our approach
leverages the LLM to autonomously select the appropriate
mutator (line 11). After mutation, our approach executes the
mutated seeds in the agent and uses predefined vulnerabil-
ity oracles to determine if they trigger the sink, outputting
successful prompts as vulnerability PoCs (lines 13-17).

5 AgentFuzz Design

In this section, we provide the design details of our approach,
called AgentFuzz. As shown in Figure 3, AgentFuzz primar-
ily consists of three phases.

• LLM-assisted Seed Generation (§5.1) generates seed
prompts with natural language semantics.

• Feedback-driven Seed Scheduling (§5.2) evaluates seed
quality based on the multifaceted feedback.

• Sink-guided Seed Mutation (§5.3) uses two mutators to
mutate and generate higher-quality seed.

5.1 LLM-assisted Seed Generation
In this phase, AgentFuzz uses static analysis techniques to
extract call chains of each sink callsite, and employs the LLM
to generate seed prompts with natural language semantics.

5.1.1 Sink Callchain Extraction

As outlined in our insights (§4.1), the class and method names
of a component provide crucial natural language semantics
that enable the LLM to infer its functionality. Consequently,
AgentFuzz identifies sink callsites within the agent and traces
the call chain backward, following the callers and extracting
class and method names along the way.

Specifically, we manually construct a predefined set of
sinks, each sink defined by a unique method signature, i.e.,
<package, class, method, parameters>. These predefined
sinks, as listed in Table 5 of Appendix C, encompass com-
mon types of security-sensitive operations recognized in
the OWASP Top Ten [14, 15], such as code injection, com-
mand injection, and SSRF. After that, AgentFuzz employs
a depth-first approach to traverse the call graph, iteratively
tracing backward from the sink callsites to identify the
callers, thereby extracting all call chains that can reach a
specific sink callsite. For each call chain, AgentFuzz termi-
nates the backward tracing once no further callers can be
identified in the constructed call graph. Take Figure 2 as an
example, AgentFuzz starts the backward tracing from the
eval function, and the final extracted call chain is eval→
ElasticsearchPermissionCheck.similarity_search.

5.1.2 LLM-assisted Seed Prompt Generation

Next, AgentFuzz leverages the one-shot learning [62] tech-
nique with Chain of Thought (CoT [66]) reasoning strategy
to guide the LLM in generating seed prompts based on the se-
mantics of the extracted call chain. A given callsite may have
multiple call chains, so we generate a distinct seed prompt for
each one. The prompt example is presented in Figure 4.

• One-shot learning enables the LLM to imitate reasoning
logic from an example to perform similar tasks [62]. In
AgentFuzz, the example consists of the call chain to the
sink, a sample prompt that triggers the sink, and the reason-
ing process behind generating this sample prompt based on
the call chain. This enables LLM to understand and imitate
the process of inferring natural language semantics from the
call chain and generating functionality-specific prompts.
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Figure 3: Architecture of AgentFuzz.

• CoT guides the LLM in refining its logic through step-by-
step reasoning [66]. This part involves: (1) inferring the
component’s functionality from the call chain, (2) generat-
ing a prompt aligned with the inferred functionality, and (3)
performing self-verification [67] to ensure prompt intent
matches the functionality and modifying it if necessary.

Seed Generation Prompt

You need to craft a prompt that guides the agent to invoke this
component. First, infer the component’s functionality from the
class and function names in the call chain. Second, generate a
prompt with matching semantics. Finally, verify its semantic
similarity to the component, and revise it if necessary.

Now here is an example you can follow:
INPUT: <CALL CHAIN>: calculator→eval
OUTPUT: <COT>: (1) The call chain "calculator→eval" sug-
gests that the component is designed to evaluate mathematical
expressions. (2) The prompt should instruct the LLM to use the
calculator component to perform an evaluation that aligns with
the function inferred from the call chain. (3) The prompt should
specify an expression for evaluation to ensure it is directly re-
lated to the component’s purpose. <PROMPT>: Please use the
calculator to evaluate the following expression: 3 * (4 + 5).

Figure 4: Seed generation prompt.

5.2 Feedback-driven Seed Scheduling
In this phase, we first introduce our novel multifaceted feed-
back design and then explain how AgentFuzz utilizes the
feedback to prioritize the seed with higher quality.

5.2.1 Multifaceted Feedback Design

AgentFuzz measures the quality of the seed based on the
following factors: ❶ semantic score, i.e., using an LLM to
assess the semantic consistency between the prompt and the
vulnerable component, ❷ distance score, i.e., employing the
distance in CFG to evaluate whether the execution trace of
the seed prompt is closer to the sink. Moreover, to avoid local
convergence, AgentFuzz also considers ❸ penalty score, i.e.,

using the number of times the seed and call chain have been
selected to assess whether the seed has fallen into a local
optimum. Finally, the feedback score of the seed is as follows:

Fs = αSs +βDs−Ps (1)

Ss, Ds, and Ps represent the semantic score, distance score,
and penalty score, respectively. α and β are hyper-parameters
that can adjust the weights of these factors. A seed with a
higher Fs score indicates higher quality.
Semantic Score. Evaluating the natural language semantic
quality of a seed prompt solely based on the prompt itself
is difficult due to the limited context it provides. To address
this, AgentFuzz records the execution trace when the agent
executes the seed prompt. It then uses the LLM to analyze
the natural language semantic gap between the name of the
methods in the execution trace and the call chain leading
to the vulnerable component, allowing for a more accurate
evaluation of the prompt’s semantic score. Our prompts are
provided in Figure 5.

Scoring Prompt

You are tasked with evaluating whether the prompt semantics can
correctly trigger the target component. Follow these steps: First,
infer the component’s functionality from the given call chain.
Second, analyze the execution trace’s semantics to assess how
well it aligns with the target component, and score the prompt.
Scoring Criteria:
10 (Fully Aligned): The prompt perfectly triggers the target.
8-9 (High Semantic Match): The prompt does not directly trigger
any component in the call chain, but is semantically close.
1-3 (Low Semantic Match): ...
0 (Completely Unrelated): The semantics of the triggered execu-
tion trace are completely unrelated to the target component.

Figure 5: Scoring prompt.

Specifically, for a given seed, AgentFuzz first provides the
LLM with its corresponding call chain, helping the LLM to
better understand the vulnerable component’s functionality.
Next, AgentFuzz records the execution trace of the prompt
and provides the LLM with key elements such as method and
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class names. These elements, rich in natural language seman-
tics, help the LLM fully understand the execution results of
the prompt, enabling it to assess the prompt’s semantic quality.
Finally, AgentFuzz leverages the LLM to evaluate the seman-
tic score of the prompt, which is based on how closely the
natural language semantics of the execution trace align with
those of the call chain. The greater the alignment, the higher
the semantic score, which ranges from 0 (completely unre-
lated) to 10 (fully aligned). To ensure more consistent scoring,
the LLM’s temperature is set to 0, which helps produce more
uniform responses during evaluation.
Distance Score. The distance score measures how closely
the execution trace of the seed prompt is to the sink callsite,
serving as a key indicator of seed quality. To evaluate this,
AgentFuzz calculates the shortest control flow path to the sink
callsite in the CFG for all method calls within the execution
trace, taking the smallest of these as the overall distance from
the execution trace to the sink. The smaller the distance to the
sink, the higher the quality of the seed. Note that a method
call absent from the CFG may imply the presence of indirect
calls that depend on specific semantics for execution, and as
such, AgentFuzz treats its distance as infinite. Finally, the
distance score is calculated as:

Ds(x) = x−k (2)

where k is the hyper-parameter that can adjust the weight and
x is the shortest distance of the execution trace to the sink
callsite. We calculate the distance score using an inversely pro-
portional function because a shorter distance indicates that the
prompt satisfies the required natural language semantics and
successfully triggers the vulnerable component. Conversely,
as the distance increases, the semantic alignment weakens,
making the prompt less likely to invoke the target component.
Thus, as x approaches infinity, Ds asymptotically tends to 0.
Penalty Score. Selecting the same seed multiple times could
lead to local convergence, reducing fuzzing efficiency. To
mitigate this, we decrease the seed’s score each time it or its
call chain is selected. The penalty score is calculated as:

Ps = γS f +ηC f (3)

where S f and C f denote the selection counts of the seed and
its corresponding call chain, respectively. γ and η are hyper-
parameters that adjust the weights of these factors.

5.2.2 Feedback-driven Seed Scheduling

Then, leveraging the multifaceted feedback scoring strategy,
AgentFuzz selects high-quality seeds from the seed pool
for mutation. We visualize this scheduling process in Fig-
ure 6. For the call chain ElasticsearchPermissionCheck
.similarity_search→eval, there are four corresponding
seeds in the seed pool. For S3, its prompt contains the seman-
tic of search, permission, and check, enabling the LLM

Call Chain ElasticsearchPermissionCheck.similarity_search         eval
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check to find documents with "Agent"

Execution Trace
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ToolBase
run
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Figure 6: An illustration of the seed scheduling process.

to accurately interpret its intent and invoke the target com-
ponent, ElasticsearchPermissionCheck. As a result, the
execution trace of S3 closely aligns with the call chain leading
to the vulnerable component in both semantic and distance
metrics, leading AgentFuzz to assign it a higher score and
select for further mutation. In contrast, S2 lacks the neces-
sary natural language semantics, preventing it from invoking
the vulnerable component and resulting in a less consistent
execution trace. AgentFuzz thus does not select it.

5.3 Sink-guided Seed Mutation
In this phase, we first introduce our functionality and argu-
ment mutators, and then describe how AgentFuzz schedules
these mutators to generate higher-quality seeds.

5.3.1 Functionality Mutator

Seed prompts may fail to trigger the vulnerable component
due to the semantic gap (e.g., the seed S2 shown in Figure 6
lacks the semantic of PermissionCheck, causing the agent
to invoke the incorrect component). Therefore, we employ a
self-improvement [44] mechanism to iteratively mutate and
improve the prompts, narrowing the semantic gap between
the prompt and the functionality of the vulnerable component.
Self-Improvement Mechanism. Leveraging the LLM’s con-
textual understanding capabilities, AgentFuzz improves the
seed based on successful mutations from previous iterations
while avoiding errors from earlier iterations. Specifically,
AgentFuzz maintains a separate chat session for each seed,
where it stores the memory of all mutation attempts associ-
ated with that seed. This memory includes details such as the
newly generated prompt, its reasoning process, the execution
trace, and the corresponding feedback score from previous
iterations. Drawing on the stored context, when a seed re-
quires mutation, AgentFuzz interacts with the LLM through
the corresponding chat session, iteratively refining the prompt
and updating the memory to guide further mutations. Prompts
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for functionality mutator are provided in Figure 7.

Functionality Mutator Prompt

You are good at modifying prompts so that their semantics can
better help agents understand and invoke specific components.
First, you need to evaluate the intent of the seed prompt based
on the execution trace and infer the functionality of the target
component based on the call chain.
Second, you need to determine which part of the input prompt
causes the agent to call the incorrect component.
Third, you need to base your reasoning on the generated prompt
in the history. Don’t make the same mistake again.
Finally, based on the previous discovery and your previous rea-
son, you need to modify the prompt to make the prompt semantics
more similar to the target call chain and ensure that the agent
calls the current component.

Figure 7: Functionality mutator prompt.

5.3.2 Argument Mutator

As discussed in §4.1, beyond ensuring natural language se-
mantic consistency, the seed prompt must ensure that the
component’s argument, derived from the LLM’s response,
meets specific constraints, ultimately reaching the sink. For
example, as shown in Figure 2, the argument content must
contain the string source_doc: to trigger the vulnerability.
To this end, AgentFuzz adopts a concolic execution-based
approach to solve constraints within the agent’s code.

Specifically, first, AgentFuzz uses static analysis to extract
the expected control-flow path to the sink. By comparing it
with the actual execution trace, AgentFuzz locates the first
unsatisfied conditional statement. Second, AgentFuzz initi-
ates concolic execution from the enclosing component of the
unsatisfied condition, treating each argument as a symbolic
variable. During the execution, the bytecode is interpreted in a
custom symbolic environment [34], which runs with concrete
values but collects the symbolic expressions of each vari-
able. When the execution reaches the unsatisfied conditional
statement or the final sink function, AgentFuzz generates the
constraints that the condition variable or the argument of
the sink function should meet based on their symbolic ex-
pressions. Third, AgentFuzz applies Constraint Solving to
generate satisfying inputs for the component’s symbolic ar-
guments. Finally, AgentFuzz applies Prompt-to-Argument
Mapping to map and replace the solved values back into the
original prompt, thus generating a new prompt for testing. In
the following, we clarify the details of Constraint Solving and
Prompt-to-Argument Mapping.
Constraint Solving. To solve the collected constraints,
AgentFuzz uses the Z3 solver [27] to compute a satisfy-
ing value for the symbolic variables (i.e., arguments of the
component). In this process, AgentFuzz first keeps one vari-
able symbolic but substitutes the others with their concrete
values; if solving fails, it gradually increases the number of

symbolic variables until a solution is found. Besides, since
string operations commonly appear in constraints, AgentFuzz
models standard Python string operations [17] (e.g., split,
startswith) as part of the constraint-solving process.

We use two examples in Figure 2 (line 9 and line 10) to il-
lustrate the solving process. For the condition “source_doc”
in content, AgentFuzz collects the constraint that content
must contain “source_doc”, and solves it by generating a
value for content that includes the required keyword. For
the sink argument content.split(‘:’)[1], AgentFuzz ex-
tracts the constraint that the second element after splitting
content by ‘:’ must match a specific value, and solves it by
generating a string like “:value” to satisfy the constraint.
Prompt-to-Argument Mapping. AgentFuzz then adjusts
the original prompt based on the value of the newly solved
component argument to satisfy the collected constraints. A
key challenge here is determining which part of the prompt
needs to be modified to meet the constraints. Based on our in-
sights, user prompts for specific tasks generally consist of two
main parts: the action and the data to be processed. The LLM
interprets the prompt to invoke the component for performing
the action and utilizes the provided data in the prompt as
arguments for the component. As a result, we can modify the
data part of the prompt to control the component’s arguments
and the variable values in the associated constraints.

To achieve this, AgentFuzz employs the Longest Common
Substring Matching (LCSM [10]) algorithm to map the vari-
able values in constraints to the specific part of the prompt,
then replacing the solution back into the prompt. Specifically,
AgentFuzz extracts the value of variables from the unsat-
isfied constraints and uses the LCSM to identify the part
of the prompt that determines these variable values. Then,
AgentFuzz replaces this part with the solved value that meets
the constraint. As shown in Figure 2, AgentFuzz inserts
source_doc: into the prompt based on the constraint solution
for the content argument, thereby triggering the sink.

5.3.3 Mutator Scheduling

AgentFuzz employs the LLM to schedule two mutators and
autonomously select the appropriate mutator based on the ex-
ecution context of the seed prompt. Specifically, AgentFuzz
provides the LLM with the following factors. (1) AgentFuzz
compares the execution trace with the control flow path to
the sink and identifies the conditional statement closest to the
sink that is shared by both paths. It then provides the entire
condition of this statement to the LLM. (2) AgentFuzz ex-
tracts the runtime values of variables used in these conditions
and provides them to the LLM, helping to determine whether
the seed prompt encounters unsolved variable constraints. (3)
AgentFuzz provides a detailed feedback score to the LLM,
aiding in the evaluation of potential semantic inconsistencies
with the target component. Note that the CFG is typically
incomplete due to indirect calls, resulting in cases where the
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execution trace does not overlap with the control flow to the
sink callsite. This indicates the natural language semantics
of the prompt are insufficient to guide the LLM to invoke
the target component through indirect calls. Therefore, in
these cases, AgentFuzz prioritizes the functionality mutator
to bridge the semantic gap rather than attempting to solve
constraints. Mutator scheduling prompt shown in Figure 8.

Mutator Scheduling Prompt

You are a scheduling system tasked with determining which
mutator is required to mutate the seed so that it triggers the sink.
We provide you with the following information:
Conditional Statement: The last conditional statement encoun-
tered and its current state during the agent’s execution.
Variable: The variable names and values within the conditions.
Feedback: The previous evaluation result of the seed, including
the semantic score and distance score.

Here is the information about the mutators:
Functionality Mutator: Designed to narrow the natural language
semantic gap between the prompt and the target component.
Argument Mutator: Designed to ensure the LLM’s response
satisfies specific code constraints.

The OUTPUT format needs to meet:
<Functionality Mutator> or <Argument Mutator>

Figure 8: Mutator scheduling prompt.

What’s more, once the sink is triggered, no further mutators
are invoked; instead, a Proof of Concept (PoC) payload is di-
rectly inserted into the seed prompt. Specifically, AgentFuzz
leverages instrumentation to capture the parameter values
of the sink and applies the Prompt-to-Argument Mapping
technique to locate the section of the prompt that flows into
the sink. Depending on the sink type, AgentFuzz replaces
the part of this section that is unrelated to the solved con-
straints with a corresponding payload (e.g., print(1) for
eval() or 127.0.0.1 for requests.get()), and then dy-
namically tracks whether the tainted payload reaches the
sink. Take Figure 2 as an example, if the data flowing into
the sink is source_doc:test, AgentFuzz replaces it with
source_doc:print(1).

6 Implementation

The implementation of AgentFuzz can be divided into static
and dynamic parts, each playing a crucial role in enhancing
the overall effectiveness of the fuzzing process. In total, the
entire prototype consists of 5,796 lines of Python code and
521 lines of CodeQL code. Details are presented below.

Static Analysis. AgentFuzz uses CodeQL [22] for static
analysis, identifying sink callsites and building call/control
flow graphs via the FunctionInvocation and BasicBlock
APIs. Analysis results are stored in CodeQL’s SARIF

files [18] and parsed by Python scripts for further processing.
The predefined sink set is shown in Table 5 of Appendix C.

Dynamic Fuzzing. The dynamic fuzzing component con-
sists of 5,796 lines of Python code, primarily comprising
three parts: fuzzing, instrumentation, and concolic execution.
The fuzzing part of AgentFuzz mainly includes the schedul-
ing and mutation modules in §5. We referred to existing
work [42, 63] that evaluates AgentFuzz on a subset of our
evaluation dataset to determine the hyper-parameter values. In
experiments, we used the following values: α = 0.5, β = 0.5,
γ = 0.2, η = 0.1, and k = 1.0. Similar to existing work [42],
these parameters are adjustable and can be further explored.

The instrumentation part serves two main purposes: feed-
back collection and bug oracle. For feedback collection,
AgentFuzz uses Python’s inspect module [8] to capture
the agent’s stack frame, thereby calculating the distance to the
sink. For bug oracle, we draw on principles from prior work
[40,61,63]. Specifically, AgentFuzz employs sys.settrace
and sys.addaudithook to hook sinks in Table 5, enabling it
to monitor whether attack payloads flow into the sink at the
AST level. Our bug oracle supports various vulnerabilities
like SQL injection, code injection, SSRF, and SSTI.

For the concolic execution part, existing techniques [58,74]
mainly target binaries rather than agents, which are typically
written in Python. To address this gap, we build an engine
on top of an existing interpreter-based concolic execution
framework [16], and integrate Python’s inspect module [8]
to extract runtime value for constraint construction.

Agent Framework. AgentFuzz uses the LangChain frame-
work [9] to interact with LLMs. By perceiving the re-
quired information from the target agent, AgentFuzz can au-
tonomously plan and adapt its actions, enabling it to function
as an effective agent for vulnerability detection.

7 Evaluation

7.1 Experimental Setup
Experiments. Our evaluation seeks to answer the following
four research questions:

• RQ1: How effective and efficient is AgentFuzz at detecting
taint-style vulnerabilities in real-world agents?

• RQ2: How many of the vulnerabilities detected by
AgentFuzz are practically exploitable?

• RQ3: How does AgentFuzz perform compared to state-of-
the-art approaches?

• RQ4: How do the different components of AgentFuzz con-
tribute to its success?

Dataset. In all, our dataset consists of 20 open-source LLM-
based agents. We provide detailed information about these ap-
plications in Table 1. Specifically, these agents were collected
from popular open-source repositories (e.g., GitHub [23])
following the steps outlined below: 1) We searched for ap-
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plications on GitHub using the keywords (e.g., “LLM”, “AI
Agent”) and sorted the search results in descending order
based on the number of stars. 2) We selected applications
based on their star count, ensuring that each application had
over 1,000 stars in its respective repository, confirming their
popularity. 3) We manually analyzed each application to de-
termine whether it provided a web service, as such server-side
agents tend to present more significant security risks and have
a more pronounced impact when exploited, making them
more easily recognized as potential targets. As a result, we
collected 20 open-source LLM-based agents, 13 of which
have over 10,000 stars, while the remaining 7 have over 1,000
stars. Most of these agents are highly renowned and have been
utilized in existing research [38, 49, 54, 70, 77]. We believe
this dataset is highly representative and reliable.
Environment. In our evaluation, we used GPT-4o [24] as the
base model for both AgentFuzz and the tested agents, with
temperature set to 0 for consistent outputs. All experiments
ran on a 64-core Intel CPU with 256 GB memory.

7.2 RQ1: Vulnerability Detection

In this part, we evaluated the effectiveness and efficiency of
AgentFuzz in detecting vulnerabilities across the dataset.
Experimental Setup. We run AgentFuzz on each agent in
our dataset. For each agent, we manually instrument it and
specify the web API of its input prompt as AgentFuzz’s in-
put. Additionally, unlike traditional application fuzzing, agent
fuzzing involves token costs. Therefore, we set a 5 minute
timeout for each sink callsite. That means, the time limit for
fuzzing each agent application differs. Agents with more sink
callsites require more fuzzing time.

In the following, we evaluate AgentFuzz’s effectiveness by
reporting the number of discovered vulnerabilities, precision
and recall rates. For efficiency, we present the CPU hours con-
sumed in each phase of fuzzing an agent, the token cost, and
the time-to-exposure (TTE) for discovering a vulnerability.
Result Overview. Overall, AgentFuzz identified a total of
828 sink callsites across the entire dataset and reported 34 po-
tential vulnerabilities, including SQL injection, command and
code injection, SSTI, and others. For the CPU hours, as shown
in the "Total. Time Cost" column of Table 1, AgentFuzz spent
a total of 69.01 CPU hours fuzzing 20 applications, averaging
3.45 per application. The Seed Prompt Generation, Schedul-
ing, and Mutation phases accounted for 39%, 5%, and 56% of
the total time, respectively. Among them, the Generation and
Mutation phases take more time, as they involve static analy-
sis and concolic execution. For the TTE, as shown in the "Avg.
TTE" column of Table 1, AgentFuzz required 121.8 minutes
to discover a vulnerability. The main bottleneck lies in the
interaction between the tested agent and the LLM, which con-
sumes a significant amount of time. For the LLM token cost,
AgentFuzz used an average of 0.69 million tokens per agent,
corresponding to a maximum cost of 6.9 dollars (based on the

Table 1: Details of the 20 agents in our dataset. Agents with
detected vulnerabilities are highlighted in gray.

Applications Stars LoCs CVEs / Vulns Total.
Time Cost

Avg.
TTE

AutoGPT 168,793 19,036 2 / 3 1.47 29.43
Dify.AI 53,770 117,752 0 3.00 /

LangFlow 37,032 45,075 2 / 3 8.13 162.58
Quivr 36,814 3,282 0 6.00 /

Chatchat 32,272 14,098 2 / 2 2.33 69.89
RagFlow 24,647 31,593 1 / 2 5.21 156.32
JARVIS 23,759 5,303 0 2.50 /
Devika 18,551 2,762 1 / 1 0.77 46.13

SuperAGI 15,541 14,003 2 / 3 7.32 146.45
Chuanhu 15,294 8,558 0 2.58 /
DB-GPT 13,858 84,323 3 / 3 4.46 89.20
PandasAI 13,629 13,774 0 3.58 /

Vanna 12,163 6,095 0 2.75 /
Bisheng 8,931 49,816 4 / 7 8.42 72.17
XAgent 8,195 10,365 0 / 1 2.33 139.80

TaskingAI 6,235 31,269 0 / 1 2.14 128.39
Taskweaver 5,377 9,833 1 / 1 1.17 70.21
AgentScope 5,368 13,627 3 / 4 3.58 53.70
Agent-Zero 4,937 3,424 1 / 1 1.08 64.78
OpenAgents 4,013 15,441 1 / 2 0.19 5.72

Total / / 23 / 34 69.01 121.78

GPT-4o token pricing as of January 2025 [25]).
False Positive Analysis. After manually reviewing each re-
port, we verified that all 34 vulnerabilities were true positives,
achieving a precision rate of 100%. This remarkable precision
is primarily attributed to our robust bug oracle. We present the
vulnerability details in Table 1 and Table 4 of Appendix B.
False Negative Analysis. To evaluate the recall rate of
AgentFuzz, we attempted to collect known vulnerabilities
matching our threat model from vulnerability platforms like
NVD [13]. However, despite our best efforts, we could not
find a sufficient number of PoC for disclosed taint-style vul-
nerabilities in agents to construct a ground truth set. Besides,
manually reviewing all 828 sink callsites to label vulnera-
bilities as ground truth proved infeasible [36, 40]. Thus, we
randomly selected 10% (i.e., 83) callsites that AgentFuzz
identified as non-vulnerable and reviewed the code to deter-
mine whether any of them were actually vulnerable.

After a thorough analysis, we classified these sink callsites
into three main categories: ❶ 93.98% of them were uncon-
trollable by the user, meaning that attack payloads could not
be injected into the sink via prompts. These sinks, therefore,
were not vulnerable. ❷ 4.82% of them were protected by
sanitizers, allowing only specific types of input to reach the
sink. For instance, in BiSheng (9.1k stars on Github [3]), de-
velopers used complex regular expressions to restrict input
to the eval function, permitting only specific numeric values.
AgentFuzz could not resolve such complex constraints and
thus failed to reach these sinks. Note that while loose saniti-
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zation measures may sometimes be bypassed, the sinks we
examined were secure due to strict sanitization rules, such
as restricting input to the integer type. These stringent mea-
sures effectively prevented any potentially harmful input from
reaching the sinks. ❸ 1.20% of them were truly vulnerable but
were missed by AgentFuzz. Upon closer examination, we dis-
covered that these were complex second-order vulnerabilities,
similar to those found in traditional software [35, 53, 76]. For
example, in Devika (18.6k stars on Github [5]), the attack pay-
load in the prompt is stored within the agent and only flows
into the sink during a second interaction in the same chat
session. Detecting such vulnerabilities is a challenging task
and worthy of further investigation. Therefore, we leave this
as an area for future research. Overall, these results suggest
that AgentFuzz exhibits a high recall rate and is capable of
effectively fuzzing security-sensitive method calls in agents,
thereby identifying taint-style vulnerabilities.

7.3 RQ2: Exploitability

In this evaluation, we attempted to verify whether the vulner-
abilities reported by AgentFuzz are practically exploitable.
Experimental Setup. AgentFuzz identifies vulnerable sinks
and generates PoCs that are used to confirm the existence
of vulnerabilities. However, a PoC does not necessarily en-
sure the vulnerability is practically exploitable. For example,
developers often define restrictions within prompts to pre-
vent dangerous behaviors, and LLMs assess the intent behind
user inputs, blocking those with malicious intent. Since PoCs
typically only include benign payloads that do not exhibit
malicious behavior (e.g., print(1)), the LLM may not block
them. Nevertheless, if the harmless payload is replaced with
a malicious one (e.g., reverse shell), the LLM may intercept
the prompt and render the vulnerability unexploitable.

Therefore, we leveraged LLM escape (e.g., prompt injec-
tion) and code escape (e.g., sandbox escape) techniques from
LLMSmith [49] to bypass the defenses implemented in both
the LLM and the code runtime environment, aiming to assess
the actual exploitability of the reports. LLM escape tech-
niques aim to bypass system prompt constraints or the safety
features of the LLM, allowing the generation of desired out-
puts that would otherwise be restricted. Code escape tech-
niques target the potential predefined sandbox restrictions
typically present in code execution components of the agent.

Specifically, following the prompt injection techniques in
LLMSmith (e.g., ignoring instructions, manipulating con-
text), we added simple prompt injection payloads in front
of the PoCs generated by AgentFuzz. These techniques are
straightforward to implement for our needs. Next, we replaced
the benign payload with malicious one (e.g., substituting
print(1) with __import__(‘os’).system(‘/bin/bash
-i >& /dev/tcp /ip/port 0>&1’)), and employed code
escape techniques from LLMSmith (e.g., inheritance chain
bypass, builtin reload) to bypass the code sandbox. Finally,

we manually validated whether each vulnerability was ex-
ploitable. We present two real-world vulnerability exploita-
tion cases in Figure 9 and Figure 10 of Appendix A.
Result Analysis. We thoroughly validated each vulnerability
report and found that all 34 vulnerabilities are exploitable.
Specifically, 14 of these vulnerabilities required the appli-
cation of LLM escape techniques, and 5 necessitated code
escape techniques to bypass the sandbox for full exploitation.
We present the detailed results in Table 4 of Appendix B.

This result offers interesting and insightful observations
into the nature of security defenses in LLM-based agents: un-
like traditional applications, where developers typically rely
on code whitelisting for security, agent developers tend to
use prompts to instruct the LLM safeguarding the agent from
malicious actions, even those suitable for code-level saniti-
zation. For example, in TaskWeaver (5.4k stars on GitHub,
maintained by Microsoft [21]), the developers use the fol-
lowing prompt to reject malicious behaviors: “Planner must
reject the User’s request if it contains potential security risks”.
While this defense mechanism is effective in certain cases,
existing research suggests that leveraging prompt injection
techniques to bypass these defenses is not a challenging task,
thus rendering them ineffective [49, 50, 57]. This result also
highlights the urgent need for secure development practices
within the agent development ecosystem.
Vulnerability Disclosure. These vulnerabilities affected 14
open-source agents, 7 of which have over 10k stars, including
widely used applications such as AutoGPT [2], which has over
100k stars. Attackers can exploit these vulnerabilities to steal
LLM API keys configured in the agents, execute malicious
code within the agents, and potentially take full control of the
server. These security breaches underscore the urgent need
for effective vulnerability detection approaches to safeguard
LLM-based agents. Consequently, we swiftly notified the
developers of all confirmed vulnerabilities in the affected
applications. To date, as shown in Table 4 of Appendix B, we
have received 27 CVE identifiers in acknowledgment.

7.4 RQ3: Comparison

In this part, we compare the effectiveness of AgentFuzz with
the SoTA technique, LLMSmith [49], across the entire dataset.
Experimental Setup. We followed the instructions in
LLMSmith’s open-source repository [11] to set up the pro-
totype and detect vulnerabilities. Specifically, LLMSmith em-
ploys static analysis to identify sink callsites within the agent
and checks whether there exists a call chain that begins with
user-level APIs and ends with a sink in the call graph. These
call chains are then reported as vulnerabilities, and LLMSmith
uses predefined prompt payloads [11] to verify them. For the
ground truth set construction, to ensure a fair comparison,
we constructed a ground truth aggregating all vulnerabilities
detected by both AgentFuzz and LLMSmith. Ultimately, our
ground truth set consists of 35 verified vulnerabilities.
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Table 2: Comparison between AgentFuzz and LLMSmith.

Baselines TP FP FN Prec(%) Recall(%)

LLMSmith 10 332 25 2.92% 28.57%
AgentFuzz 34 0 1 100% 97.14%

Result Overview. Table 2 provides a detailed comparison
of the effectiveness of AgentFuzz and LLMSmith across the
entire dataset. Overall, AgentFuzz demonstrates better per-
formance, surpassing LLMSmith by 33.25 times in precision
rate and detecting 2.4 times more vulnerabilities. More specif-
ically, when tested against the ground truth, AgentFuzz iden-
tifies 34 vulnerabilities. In contrast, LLMSmith detects only
10, all of which are a subset of the vulnerabilities identified by
AgentFuzz, and produces 332 false positives. These results
underscore the superior capability of AgentFuzz.
False Positive Analysis. We comprehensively analyzed all
the 332 false positives of LLMSmith, and their causes can be
mainly attributed to three aspects. Firstly, the parameters of
the sink callsite are uncontrollable by the user. This is also one
of the reasons for false positives mentioned in LLMSmith’s
paper. Secondly, the coarse-grained static analysis strategy of
LLMSmith led to incorrectly constructed call edges. Python is
a dynamically typed language, and LLMSmith relies on string
matching to build call edges. This coarse-grained approach ul-
timately led to false positives, which is another source of false
positives discussed in LLMSmith’s paper. Thirdly, there are
some developer-customized sanitizers within the agents. As
mentioned in RQ1, developers may enforce strict constraints
to limit the values flowing into the sink. LLMSmith is unable
to identify these constraints, leading to false positives.
False Negative Analysis. For the 25 false negatives, LLM-
Smith missed them primarily due to two main reasons. On
one hand, 9 false negatives were caused by the inherent lim-
itations of Python static analysis. As described in §3, indi-
rect calls are very common in Python. These indirect calls
prevent LLMSmith from establishing call edges between the
caller and its corresponding callee, leading to missed detec-
tions. On the other hand, 16 false negatives were caused by
a limited sink list. LLMSmith only considers eval, exec, and
subprocess.run as sinks, meaning it fails to detect vulnera-
bilities introduced by other security-sensitive functions.

7.5 RQ4: Ablation Study
In this part, we conducted an ablation study to demonstrate
the necessity of each key component of AgentFuzz.
Variants Setup. First, we constructed four variants of
AgentFuzz, each of which disables a key component and uses
the rest of the system as is. The details are as follows.

• AgentFuzz-NoGen. We disabled the LLM-assisted Seed
Generation module and instead used traditional vulnera-

Table 3: Ablation study for four variants of AgentFuzz (RQ4).

Baselines TP FP FN Prec(%) Recall(%)

AgentFuzz-NoGen 19 0 16 100% 54.29%
AgentFuzz-NoSch 26 0 9 100% 74.29%
AgentFuzz-NoSem 27 0 8 100% 77.14%
AgentFuzz-NoMut 25 0 10 100% 71.43%

AgentFuzz 34 0 1 100% 97.14%

bility PoCs along with predefined prompts from SoTA scan-
ners [26, 28] and LLMSmith as initial seeds.

• AgentFuzz-NoSch. We disabled the Feedback-driven Seed
Scheduling module and randomly selected seeds from the
seed pool for further mutation.

• AgentFuzz-NoSem. We disable the semantic score while
preserving the distance score within the seed scheduling
module. This means AgentFuzz-NoSem prioritizes seeds
based solely on their proximity to the sink in the CFG.

• AgentFuzz-NoMut. We disabled two mutators and relied
solely on the initial seed to detect vulnerabilities, thereby
illustrating the crucial role of our mutation strategy.

Result Analysis. Table 3 provides a breakdown of the com-
parison results between AgentFuzz and its four variants. A
detailed analysis of the results is as follows:
❶ AgentFuzz-NoGen vs. AgentFuzz. As shown in Table 3,
AgentFuzz-NoGen missed 16 vulnerabilities and its recall
rate dropped to 54.29% compared to AgentFuzz. This decline
can be attributed to AgentFuzz-NoGen’s inability to generate
functionality-specific seeds in natural language. While our
functionality mutator attempted to mutate the prompt’s seman-
tics, AgentFuzz-NoGen still struggled to generate prompts
that could reach the sink within the available time.
❷ AgentFuzz-NoSch vs. AgentFuzz. As shown in Table 3,
AgentFuzz-NoSch missed 9 vulnerabilities, resulting in a
recall rate drop to 74.29%. These missed vulnerabilities
stemmed from AgentFuzz-NoSch’s random seed selection
strategy, which failed to choose high-quality seeds for mu-
tation. As a result, it became stuck repeatedly mutating un-
promising seeds in the pool. This inefficient mutation process
wasted both time and tokens, leading to timeouts. This re-
sult highlights the importance of our scheduling strategy in
optimizing token usage and improving fuzzing efficiency.
❸ AgentFuzz-NoSem vs. AgentFuzz. AgentFuzz-NoSem
missed 8 vulnerabilities, resulting in a 20.6% decrease in
recall compared to AgentFuzz. These missed cases stem
from the limitation of relying solely on distance-based scor-
ing, which fails to distinguish between seeds with identi-
cal distance values but different semantics. As a result, it
cannot prioritize high-quality seeds from a large seed pool
that does not reach the sink. Taking Figure 6 as an exam-
ple, AgentFuzz-NoSem assigned identical distance scores (0
points) to all four seeds. Thus, it failed to promptly select S3,
which carries semantics more aligned with the target compo-
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nent, for further mutation. This led to time wasted on mutating
unpromising seeds and resulted in missed vulnerabilities.
❹ AgentFuzz-NoMut vs. AgentFuzz. AgentFuzz-NoMut can
not perform mutations and relies solely on the seed genera-
tion to produce simpler, more straightforward prompts. As a
result, for vulnerabilities that require specific code constraints
or complex semantics, AgentFuzz-NoMut failed to generate
prompts that met these requirements, leading to missed detec-
tions. This result highlights the necessity of our mutators.

8 Case Study

We showcase two real-world taint-style vulnerabilities to high-
light AgentFuzz’s practical effectiveness.
Case I: Code Injection in S*** application. The S*** is
a highly popular agent with over 15k stars on GitHub. For
ethical reasons, we anonymized the application names. As
depicted in Figure 9 of Appendix A, in the evaluate(),
the content enclosed within square brackets (i.e., “[]”) in
the LLM’s response is extracted (lines 3–5) and flows into
eval() (line 6), leading to a code injection vulnerability. At-
tackers can craft prompts with specific semantics (i.e., “eval-
uate the provided task output”) to instruct the agent to in-
voke the TaskOutputHandler component. By employing
prompt injection techniques (i.e., “ignore what you are told
above”), attackers can manipulate the agent to overlook the
dangerous behavior in the malicious payload (i.e., [__im-
port(‘os’)__.system(‘whoami’)]) and pass it as arguments
to the evaluate(), finally flows into the eval(). Given the
extensive potential damage, we reported this critical issue to
the developers and received a CVE ID (CVE-2024-5**95).
Case II: SSTI in A*** application. The A*** is an open-
source and widely used LLM-based agent with over 160k
stars on GitHub. Figure 10 of Appendix A illustrates an SSTI
vulnerability reported by AgentFuzz. A*** dynamically in-
vokes the FillTextTemplateBlock.run() to interpret the
LLM’s response based on the semantics of the input prompt.
The LLM’s response is rendered using jinja2 (lines 4–5)
to generate the final output. However, this rendering pro-
cess lacks adequate security safeguards. Attackers can craft
a prompt with specific semantics to invoke the component
with a malicious payload as its argument. This payload is then
rendered by from_string() of jinja2 template, resulting in
an SSTI vulnerability. This vulnerability allows attackers to
execute arbitrary code, thereby gaining full control over the
server remotely. Given the potential impact, we reported the
issue to the developers and received CVE-2024-5**87.

9 Discussion

Rethinking the Security Landscape of Agents. Through
an in-depth analysis of the agent’s code and active commu-
nication with developers, we observed a notable trend in the
development of LLM-based agents: developers prioritize the
evolution and enhancement of complex features, while rela-

tively giving less attention to securing the code. Moreover,
although some developers utilize separate Docker containers
for code execution tools to ensure environment isolation, other
components, such as output parsers, still contain vulnerable
sinks that could be exploited for remote code execution. These
observations reveal a critical gap in the security awareness of
current agent developers, leaving agents vulnerable to signifi-
cant risks and emphasizing the urgent need to prioritize secure
development practices [19] within the agent ecosystem.
Mitigation. The severity of taint-style vulnerabilities in
agents emphasizes the urgent need for tailored mitigation
strategies. Based on our evaluation, we propose three mea-
sures to address these risks: ❶ Minimize reliance on security-
sensitive operations. In many cases, the use of such opera-
tions is unnecessary. For instance, in a calculator function,
numexpr.evaluate is a safer alternative to eval for evalu-
ating expressions. Developers should prioritize in adopting
such secure methods to mitigate potential risks. ❷ Environ-
ment isolation. When the use of security-sensitive operations
is unavoidable (e.g., code execution functionality), develop-
ers should isolate these functions within secure, isolated en-
vironments, such as Docker containers or Jinja Sandboxes.
Additionally, computational resources allocated to these en-
vironments should be restricted to limit potential risks like
DoS. ❸ Adequate input sanitization. For functions that must
rely on security-sensitive operations and cannot be easily
isolated (e.g., allocating Docker containers for each external
request may incur significant overhead), developers should
adopt input sanitization commonly used in traditional soft-
ware development. For example, AutoGPT [2] uses a blacklist
to prevent the WebSearch from accessing internal network.
Future Work. Detecting higher-order vulnerabilities that re-
quire a sequence of prompts to exploit is generally a chal-
lenging problem [35, 59]. Therefore, this paper focuses on
taint-style vulnerabilities triggered by a single prompt. Prior
work [61] shows that single-step vulnerabilities account for
the majority of taint-style cases. We believe that detecting
high-order vulnerabilities in agents is an important research
topic and regard it as a promising direction for future work.

10 Conclusion

This paper proposes AgentFuzz, a novel directed fuzzing ap-
proach that can automatically detect taint-style vulnerabilities
within LLM-based agents. To bridge the gap between tradi-
tional directed fuzzing and agent vulnerabilities, AgentFuzz
introduces several novel techniques to generate semantically-
correct and constraint-valid seed prompts in the form of natu-
ral language. AgentFuzz has been evaluated on 20 real-world
agent applications. Overall, AgentFuzz discovered 34 high-
risk 0-day vulnerabilities, with 23 CVE IDs assigned. We
believe that AgentFuzz can foster the research of LLM-based
agent security and aid the community in addressing the rising
threats of agent vulnerabilities.
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Ethics Considerations

Vulnerability Verification Environment. In our evaluation
part, all of the agents are open-source, and we downloaded and
conducted static analysis on them locally through AgentFuzz.
This process did not involve any data related to real user pri-
vacy. Then, after AgentFuzz reported potential vulnerabilities,
we built these agents on a local server for vulnerability verifi-
cation. This process also did not involve any data related to
real users.
Vulnerability Disclosure. In terms of vulnerability disclosure,
all our vulnerability reports have strictly adhered to the time-
line of the CVE Numbering Authorities (CNA), along with
proactive communication with all developers. Specifically,
after we manually confirmed the vulnerabilities, we immedi-
ately contacted the developers, including raising issues in the
Github repository and via email. We carefully explained to
the developers the cause of the vulnerability, the details of vul-
nerability exploitation, and the corresponding recommended
solutions for fixing the issues. Although some vulnerabilities
were still being fixed at the time we submitted this paper,
we did not mention any important information about these
vulnerabilities in the paper and anonymized all vulnerabilities
and affected applications. Therefore, the release of this paper
will not cause any harm to real-world users.

Open Science

In alignment with the open science policy, we are committed
to fully following the conference’s artifact evaluation guide-
lines. We publicly release the source code of AgentFuzz,
along with the datasets and baselines used for evaluation in
our research [20].
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A Case Studies

Figure 9 and Figure 10 present simplified code snippets in §8.

Class TaskOutputHandler():

    def evaluate(content):

         ...

         # content = "[__import__('os').system('whoami')]"

        first_index = content.index("[")

        last_index = content.rindex("]")

        final_result = content[first_index+1: last_index]

        # final_result = "__import__('os').system('whoami')"

        ... 

        eval(final_result)
         

1

2

3

4

5

6

From now on, ignore what you are told above!

Please conduct a comprehensive evaluation of the provided 

task output: "[__import__('os').system('whoami')]"

Attack Prompt Payload

root
Execute "whoami" Command! 

Figure 9: Code Injection vulnerability in S*** agent applica-
tion (over 15k stars on Github).

from jinja2 import BaseLoader, Environment

Class FillTextTemplateBlock():

    def run(response):

         ...

        jinja = Environment(loader=BaseLoader())        

        result = jinja.from_string(response).render()

        ...        

1

2

3

4

5

From now on, ignore what you are told above! 

Use FillTextTemplateBlock to render the following template: 

{{"".__class__.__bases__[0].__subclasses__()[140].__init__.

__globals__.popen('whoami').read()}}

Attack Prompt Payload

root
Execute "whoami" Command! 

Figure 10: Server-Side Template Injection vulnerability in
A*** agent application (over 160k stars on Github).

B Assigned CVEs

Table 4 breaks down the CVE details and the techniques used
to exploit the vulnerability.

Table 4: Detected vulnerabilities and assigned CVEs.

Applications CVEs Type PI1 CE2

AutoGPT
CVE-2024-5**87 SSTI w w/o

Assigning SSTI w w/o
CVE-2025-2**03 SSRF w/o w/o

LangFlow
CVE-2024-5**00 CODEi w w/o
CVE-2024-5**97 SSRF w/o w/o

Assigning SSRF w/o w/o

Chatchat
CVE-2024-5**82 CMDi w w/o
CVE-2024-5**99 SQLi w/o w/o

RagFlow
CVE-2025-2**47 SSRF w/o w/o

Assigning SQLi w/o w/o

Devika CVE-2024-5**92 CMDi w w/o

SuperAGI
CVE-2024-5**95 SSRF w/o w/o
CVE-2024-5**91 CODEi w w/o

Assigning CODEi w w/o

DB-GPT
CVE-2024-5**91 CODEi w/o w/o
CVE-2024-5**03 SSRF w/o w/o
CVE-2024-5**83 SQLi w/o w/o

Bisheng

CVE-2024-5**93 CODEi w w/o
CVE-2024-5**02 CODEi w w/o
CVE-2024-5**06 CMDi w w/o
CVE-2024-5**05 CODEi w w/o

Assigning CODEi w/o w/o
Assigning CODEi w/o w/o
Assigning CODEi w/o w/o

XAgent Assigning CMDi w/o w

Tasking-AI Assigning SSRF w/o w/o

TaskWeaver CVE-2024-5**94 CODEi w w

AgentScope

CVE-2024-5**89 CODEi w w
CVE-2024-5**95 SSRF w/o w/o
CVE-2024-5**01 CMDi w/o w/o

Assigning SSRF w/o w

Agent-Zero CVE-2024-5**84 SSRF w/o w

OpenAgents
CVE-2024-5**99 CODEi w w/o

Assigning SQLi w/o w/o

1With or without the Prompt Injection technique used to
exploit the vulnerability.
2With or without the Code Escape technique used to exploit
the vulnerability.
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C Sink List

Table 5 lists the sinks used in AgentFuzz.

Table 5: Sink types and corresponding classes and methods.

Package Class Methods Type

subprocess /
run, call, check_call,

CMDi
Popen, getoutput

os /
system, popen,

CMDi
exec*, spawn*

builtins / eval, exec CODEi

urllib / request.urlopen SSRF

requests / get, post, request SSRF

requests Session get, post, request SSRF

httpx AsyncClient get, post, request SSRF

aiohttp ClientSession get, post, request SSRF

urllib3 PoolManager urlopen, request SSRF

urllib3 / request SSRF

jinja2 Environment from_string SSTI

flask Function render_template_string SSTI

sqlite3 Cursor execute SQLi

sqlalchemy Session execute SQLi

sqlalchemy Connection execute SQLi

django / cursor.execute SQLi
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