The Journal of Systems and Software 209 (2024) 111886

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

t.)

k¢ Check for
i‘(updates
L |

Valkyrie: Improving fuzzing performance through deterministic techniques
Yuyang Rong ®*, Chibin ZhangP, Jianzhong Liu®, Hao Chen?

a University of California, Davis, CA, USA
b ShanghaiTech University, Shanghai, China

ARTICLE INFO ABSTRACT
Keywords: Greybox fuzzing has received much attention from developers and researchers due to its success in discovering
Fuzzing bugs within many programs. However, randomized algorithms have limited fuzzers’ effectiveness. First, branch

Dynamic analysis

coverage feedback that is based on random edge ID can lead to branch collision. Besides, state-of-the-art fuzzers
Vulnerability detection

heavily rely on randomized methods to reach new coverage. Finally, some state-of-the-art fuzzers only employ
heuristics-based bug exploitation methods, which are not effective in triggering those that require non-trivial
triggering conditions.

We believe deterministic techniques deliver consistent and reproducible results. We propose Valkyrie,
a greybox fuzzer whose performance is boosted primarily by deterministic techniques. Valkyrie combines
collision-free branch coverage with context sensitivity to maintain accuracy while introducing an instrumen-
tation removal algorithm to reduce overhead. It also pioneers a new mutation method, compensated step,
allowing fuzzers that use solvers to adapt to real-world fuzzing scenarios without randomness. Additionally,
Valkyrie proactively identifies possible exploit points in target programs and utilizes solvers to trigger actual
bugs. We implement and evaluate Valkyrie’s effectiveness on the standard benchmark Magma, and a wide
variety of real-world programs. Valkyrie triggered 21 unique integer and memory errors, 10.5% and 50%
more than AFL++ and Angora, respectively. Valkyrie reached 8.2% and 12.4% more branches in real-world
programs, compared with AFL++ and Angora, respectively. We also verify that our branch counting and
mutation method is better than the state-of-the-art, which shows that deterministic techniques trump random
techniques in consistency, reproducibility, and performance.

1. Introduction conceiving a number of AFL-derived fuzzers with numerous improve-

ments (Aschermann et al., 2019; Béhme et al., 2019; Chen and Chen,

Greybox fuzzing has achieved much progress over the past few
years, becoming more accepted in industry applications while receiving
much attention in academia. Fuzzing’s scalability and soundness have
led security researchers to find a multitude of vulnerabilities in a wide
variety of software, including IoT devices (Chen et al., 2018; Wang
et al., 2019b), Android apps (Liu et al., 2020), kernels (Jeong et al.,
2019; Xu et al., 2020; Xu et al., 2019), and application software (Anon,
2014; Bohme et al., 2019; Chen and Chen, 2018; Fioraldi et al., 2020;
Lyu et al., 2019).

Many state-of-the-art greybox fuzzers are based on American Fuzzy
Lop (AFL) (Anon, 2014). AFL is a classic mutation-based greybox fuzzer
offering a versatile and robust architecture that allows developers to
port its design to numerous platforms and operate on vastly different
fuzzing targets. This has sparked interest in the research community,

" Editor: Prof W. Eric Wong.
* Corresponding author.

2018; Fioraldi et al., 2020; Gan et al., 2018; Lyu et al., 2019).

However, their respective strategies are limited by randomized
algorithms. For example, AFL-based fuzzers obtain program feedback
in the form of branch coverage by recording the hit counts of each
branch in a fixed-size bitmap called branch count table. Branches’ IDs
are determined randomly at static time to index the table. Randomly as-
signed IDs result in potential collisions where two branches correspond
to the same ID, also known as the branch collision problem. On the
other hand, the importance of context-sensitive branch counting can be
corroborated by its extensive implementation in newer fuzzers (Chen
and Chen, 2018; Fioraldi et al., 2020). The increased unique branches
brought by this new context information exacerbate branch collision
problem.

E-mail addresses: PtrRong@ucdavis.edu (Y. Rong), zhangchbl @shanghaitech.edu.cn (C. Zhang), liujzh@shanghaitech.edu.cn (J. Liu), chen@ucdavis.edu

(H. Chen).

https://doi.org/10.1016/j.jss.2023.111886

Received 9 February 2023; Received in revised form 31 August 2023; Accepted 25 October 2023

Available online 10 November 2023

0164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:PtrRong@ucdavis.edu
mailto:zhangchb1@shanghaitech.edu.cn
mailto:liujzh@shanghaitech.edu.cn
mailto:chen@ucdavis.edu
https://doi.org/10.1016/j.jss.2023.111886
https://doi.org/10.1016/j.jss.2023.111886
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111886&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Rong et al.

An intuitive solution to mitigate this problem is to increase the
branch count table’s size, which is state-of-the-art fuzzers’ approach.
However, during our tests with programs such as tcpdump, the uti-
lization rate of bitmaps can reach up to 36.6% even when enabling
context-sensitivity using an enlarged 1MiB bitmap. As shown by Gan
et al. (2018), such utilization rates can induce very high collision rates,
while an enlarged buffer reduces execution throughput by 30% on some
programs. AFL++’s LTO mode statically assigns each branch a unique
ID to achieve collision-free. However, its design does not accommodate
for context-sensitivity, which is important for the fuzzer to detect subtle
but important changes in a program’s execution state.

Therefore, fuzzer developers have to face a trade-off between fine-
grained but slow feedback or a fast but inaccurate one. Such trade-off
has been carefully studied in Wang et al. (2019a). Thus, there is a need
for a better solution that takes a principled approach towards providing
detailed, accurate, and efficient branch counting.

On the other hand, little effort is put into mutators. AFL-based
fuzzers generally use heuristic methods, most of which are based on
randomization. Even fuzzers with solvers have unrealistic assumptions,
which often lead to failure and force the fuzzer to turn to randomization
as a last resort. For example, in Angora, lots of “odd heuristics and
parameters” (Zeller, 2019) are added to the code. These heuristics
caused uneven performances across trials. Therefore, Klees et al. (2018)
proposes a series of methods including repeated trials to guarantee the
comparison is fair. However, real-world bugs are far and rare. Even ten
repeated trials cannot guarantee a bug being found.

We carefully study the state-of-the-art fuzzers with embedded
solvers and find these fuzzers generally work in the following fashion.
First, the fuzzer picks an unsatisfied branch predicate to solve. Then,
it identifies the input sections that can affect the predicate’s outcome
through techniques such as dynamic taint analysis. Next, the fuzzer uses
the solver to identify and exploit certain features of the predicate to
solve it. The fuzzer continues to solve the target predicate until either
the predicate is satisfied or the solver has exhausted its time budget. It
then picks another predicate and repeats the process mentioned above.
For instance, REDQUEEN attempts to identify and tackle checksums
and hashes through techniques similar to magic byte matching, but it
cannot solve general arithmetic predicates (Aschermann et al., 2019).
QSYM uses a modified concolic solver to solve the target predicate,
but these solvers cannot solve constraints with complicated forms such
as nonconvexity (Yun et al.,, 2018). Angora converts the predicate to
an objective function f(x) to optimize using gradient descent, where
x represents sections of input bytes (Chen and Chen, 2018). Using
numerical differentiation, Angora approximates the objective function’s
gradient and performs descent by mutating the corresponding input
sections.

Some solvers fall back to random mutation when their assumptions
do not hold for scenarios in real-world programs. Mathematical meth-
ods such as gradient descent are designed to work on functions in the
real domain, which renders these solving methods ineffective against
real-world constraints where many are in the bounded integer domain.
Therefore, fuzzers that utilize these methods can only solve a subset of
the predicates for the following reasons. (1) They believe the mutation
amount 4x is always an integer, and (2) the predicate may overflow
when the mutation amount derived from an integer Ax is too large.
Therefore we need to find a way to allow solvers assuming real domain
to work with branch predicates in real-world programs, allowing the
fuzzer to release its full potential instead of rolling a dice and hoping
for the best.

The fuzzing process involves two distinct tasks: exploration and
exploitation. During the exploration phase, the fuzzer generates seeds
to achieve broader coverage of the target codebase. Conversely, the
exploitation phase focuses on uncovering bugs by generating seeds that
lead to program crashes or other notable behaviors. While state-of-
the-art fuzzers employ various strategies for exploration, many rely
on heuristic-based methods for bug exploitation. For instance, popular

The Journal of Systems & Software 209 (2024) 111886

fuzzers like AFL and AFL++ employ random mutation techniques to
blindly trigger bugs. In contrast, more advanced fuzzers like Angora
identify specific instructions and attempt to insert values such as NULL
or INT_MAX to trigger out-of-bounds memory access bugs. However,
these approaches may fall short in detecting bugs that require non-
trivial triggering conditions, such as specific input values or particular
triggering mechanisms. Consequently, the effectiveness of the fuzzer
may be compromised in such cases.

These problems are the current blocking issues when we hope to
improve fuzzing effectiveness. A collision-prone and imprecise branch
coverage feedback mechanism will cancel out the benefits of improved
mutation methods, as the fuzzer would likely miss the resulting in-
creased program states. A more sophisticated mutator cannot deliver its
promise unless the fundamental assumptions hold under most circum-
stances. Ineffective exploitation methods render the fuzzer incapable
of triggering bugs within code that has been already explored. We
believe deterministic algorithms produce more consistent, predictable,
reproducible results. Therefore, we wish to eliminate the randomness
used in these two components. After re-evaluating these methods, we
design techniques that address each aspect of the issues mentioned
above:

First, we combine the best of two worlds by designing a branch cov-
erage feedback mechanism that is collision-free and context-sensitive.
We use static analysis to identify all possible branches present within
the program. Instead of assigning each branch a static ID like current
approaches, we give each branch a relocatable, function-local incre-
mental ID. Additionally, we statically determine all possible first-order
function contexts, i.e., function contexts are determined solely by the
call site. For each function, we identify its direct call sites at static
time. For indirect function calls, we assume any function with the
same signature may be called at runtime. Thus, each branch’s context-
sensitive ID at runtime is determined by its function-local ID and the
current function context. Furthermore, we develop an algorithm to
remove unnecessary instrumentation while maintaining accuracy to
reduce the table size. We also prove the correctness of the algorithm. To
adapt to more extensive programs, we statically determine the required
size for the branch counting table and negotiate a suitably-sized buffer
automatically with the fuzzer at initialization. This approach allows for
more fine-grained feedback while reducing overhead, improving the
fuzzer’s ability to observe execution state changes in the program.

Next, we design a compensated step method that adapts solver al-
gorithms developed for values in the real domain to integer domains,
where many real-world programs run. To demonstrate the effectiveness
of this approach, we use a gradient descent solver and apply our mod-
ifications. The high-level idea of this method is to clip the fractional
values that could not be applied to integer values and compensate them
to other components of the input vector. We denote the input vector as
x, the original mutation amount as 4x € R”, where » is the dimensions
of the input vector, i.e., the number of input bytes of a predicate. Our
target is to find a compensated mutation amount 4x’ € 7", such that
f(x+4x) = f(x+4x’). We also make some modifications to the original
gradient descent solver such that compensated mutation can perform
well in real-world situations. Specifically, we first modify the initial
step size such that it is set to the smallest possible value by which
the predicate can change, then doubling the step size value upon each
successful descent step. We also used a different differential approach
to get a more precise gradient.

Finally, we propose proactive exploitation that augments the
fuzzer’s bug detection capabilities. This method works by first iden-
tifying exploit points, i.e., locations where bugs may be present, in the
target program during static analysis. We identify values according to
its exploitation type that may trigger a bug, including divide by zero,
out-of-bounds memory access, and memory allocation. In contrast with
filling the input with interesting or randomized values, we utilize the
solver to change the specific input values such that each exploit point
will possibly trigger a bug during fuzzing. In order to maintain fuzzing

Y. Rong et al.

throughput, we prioritize conventional exploration, i.e., we first solve
as many branch predicates as possible, thus covering as much code
as possible, then for all exploit points found in the covered code, we
attempt to trigger bugs within the program. Additionally, we devise
a way to lower the runtime costs due to the added instrumentation
code based on the observation that most instrumented code during
one execution of the fuzzed program does not require execution. We
clone each function into copies that are instrumented with different
instrumentation types, such as one copy for exploration feedback,
another two for memory-related exploitation and integer-related ex-
ploitation, respectively. At runtime, we only execute the corresponding
instrumented function if it contains the target predicate or exploit
point.

We implement a prototype fuzzer Valkyrie to deliver better perfor-
mance through our improvements. We evaluate Valkyrie’s effectiveness
on standard dataset Magma and real-world programs. On Magma,
Valkyrie found 21 unique integer and memory errors with no need for
any randomization methods, 10.5% and 50% more than AFL++ and
Angora, respectively. We also examine the performance of Valkyrie
on real-world programs. First, our tests show that Valkyrie increased
branch coverage by 8.2% compared with AFL++, and 12.4% compared
with Angora. Second, we demonstrate that Valkyrie’s branch counting
mechanism allows for collision-free branch counting. At the same time,
when using a bitmap with comparable size to Valkyrie’s, AFL and
Angora result in significant bitmap utilization rates, leading to high
occurrences of collisions. Finally, we compared Valkyrie’s solver with
Angora’s to show that even without any heuristics, our compensated
step mutation can still do better than Angora.

This paper, makes the following contributions:

(1) We propose a collision-free branch counting method and an
algorithm to reduce branch count table size.

(2) We propose an efficient mutation method for predicate solver.
With the new solver, we can effectively target some memory and
integer bugs during fuzzing.

(3) We implement a prototype fuzzer Valkyrie using these determin-
istic techniques and evaluated its effectiveness and performance.

(4) We demonstrate Valkyrie delivers a more stable and uniform
performance than other commonly seen fuzzers on benchmarks
and real-world programs.

2. Background and motivation

AFL is a classic mutation-based greybox fuzzer. AFL monitors the
program state by inserting light instrumentation and monitoring branch
coverage states. It then uses a series of heuristics and randomized meth-
ods to mutate existing seeds. The instrumented program is executed
using the mutated seed. AFL will save the new seed if a new branch
state is triggered.

Most fuzzers in the AFL family inherit these techniques with some
modifications. For instance, fuzzers in the AFL family generally use
a fixed-sized bitmap to record branch coverage information, allow-
ing the fuzzer to identify new triggered states and save the mutated
input as a seed for further mutation. During program execution, the
instrumentation code increments the branch’s bitmap entry whenever a
new branch is executed. Some AFL-derived fuzzers implement context-
sensitive branch counting (Chen and Chen, 2018; Fioraldi et al., 2020)
to assist in discerning more unique states.

However, since the branch ID is determined randomly during in-
strumentation, it is not unique and can lead to branch collision. Gan
et al. demonstrated that collisions are non-trivial and increase with the
number of branches present within a program (Gan et al., 2018). Paired
with context-sensitivity, which significantly increases the number of
unique branches observable by the fuzzer. Branch collisions pose a
significant challenge when improving fuzzing effectiveness.

The Journal of Systems & Software 209 (2024) 111886

There are several attempts to mitigate the problem. For instance,
Angora defaults to a larger bitmap size, which has been proved ineffec-
tive by Gan et al. since it does not eliminate collisions and slows down
execution speed significantly. Gan et al. proposed CollAFL, which as-
signs IDs using non-random algorithms that greatly reduces collisions.
AFL++ offers an optional LTO mode that provides collision-free branch
counting (Fioraldi et al., 2020). However, the former cannot adjust to
programs automatically, while the latter is experimental and buggy.
Besides, both approaches lack context-sensitivity.

Fuzzers in the AFL family randomly mutate the entire input. Ran-
dom mutation becomes somewhat ineffective after the “easy” branches
are solved. More recent developments focus on using solvers to solve
branch predicates to dive deeper into the code. It is guaranteed to
alter the control flow once the predicate is solved and possibly yield a
new path. Many solvers have been proposed, including input-to-state-
correspondence (Aschermann et al., 2019), concolic solvers (Yun et al.,
2018), and gradient methods (Chen and Chen, 2018). These fuzzers
generally operate using the following workflow: (1) it identifies the
corresponding input sections of the target predicate, (2) then it derives
relevant properties of the predicate, such as the gradient, and (3) it
mutates the input sections with its predicate solver using the above
information.

However, these methods are limited in real-world scenarios. For
example, the gradient method used in Angora assumes the input do-
main to be continuous when it is discrete in most cases. This limits
its ability to solve many real-world predicates, which becomes difficult
and almost impossible to solve using continuous domain assumptions.
Listing 1 is an example code copied from libjpeg, where three input
bytes are involved, two of which describes the buffer length and the
other is the number of components in the buffer. There is a sanity check
before the program consumes the buffer. Angora may convert the check
into an objective function f(x) = |gx” — 8| where g = [256,1,-3] is
the gradient. Then Angora tries to minimize it using classic gradient
descent, where one can move input in arbitrarily small steps. Suppose
the initial point is x;,;, = [0,12,1]. When trying to take a small step
—ag, say a = 0.1, —ag = [0,-0.1,0.3], later two dimensions will find
it unable to accept a fractional value and thus floored step to [0, —1,0]
and result to x = [0, 11,0]. Angora would stagnate at this point. Since
the first and the second dimensions are going in opposite directions,
and all dimensions must be positive, Angora cannot find a next step.

One may argue that in this situation, we can use ceiling or rounding
to solve this problem. However, we can always find code snippets
where one operation works and the other two fail. The root cause is not
clipping operations we choose to use, but that the assumption Angora
made is not true in real-world programs, as each byte is bounded to
[0,255] and the smallest step by which one input byte can change is
either 1 or —1.

1 | static unsigned int NEXTBYTE (void);
static void process_SOFn (...) {
unsigned int length = (NEXTBYTE() << 8) +
NEXTBYTE () ;
unsigned int num_components = NEXTBYTE();
if (length != 8 + num_components x* 3)
ERREXIT ("Bogus SOF marker length");

w N

N O U

}

Listing 1: Code snippet copied from libjpeg-9d. The program requires
the length to be a specific amount to continue.

Bug exploitation in programs is another area that state-of-the-art
fuzzers cannot perform as well as expected. In this paper, exploitation
refers to the process where the fuzzer tries to detect bugs from exploit
points by generating a seed that crashes the program at the exploit
point. State-of-the-art fuzzers generally employ heuristics-based bug
exploitation methods. Popular fuzzers such as AFL and AFL++ gen-
erally use random mutation and, in some cases, dictionary values in
an attempt to trigger bugs within the program. Angora only targets

Y. Rong et al.

a small subset of possible exploitation points, for example, buffer
indexing operations, and sets pre-defined values based on heuristics,
such as INT_MAX or NULL. While these methods have been able to find
numerous bugs in the history of these tools, more have been overlooked
due to their non-trivial triggering conditions. Thus, we need a proactive
bug exploitation method that allows the fuzzer to find these bugs within
the explored program code.

3. Design

To overcome the limitations of state-of-the-art fuzzers, we propose
the following improvements:

(1) a branch counting mechanism that combines collision-free and
context-sensitivity, with an instrumentation removal algorithm
to reduce memory overhead while maintaining accuracy,

(2) a predicate solver that adapts traditional optimization tech-
niques designed for the real domain to bounded integer domain.

3.1. Collision-free context-sensitive branch counting

Following the common practice in fuzzing, we record the visit
counts of branches and use them to approximate the state of the
program. We designed our mechanism to be both context-sensitive and
collision-free to improve the accuracy of the branch counting feedback.
In current collision-free branch counting techniques, each branch is
given a static unique ID b. Context-sensitive branch counting techniques
generally use a context identifier ¢ to differentiate between branches
when appearing in different function contexts. Thus, we denote the
tuple (c,b) as the context-sensitive branch. Our mechanism ensures
that we record the visit count of each unique context-sensitive branch
separately.

In contrast to AFL-derived branch counting mechanisms which use
fixed-size branch counting tables, we wish to find the minimal space
required for storing all the visit counts, allowing the fuzzer to adapt to
any given program automatically. We achieve this in three steps. First,
we identify all the unique context-sensitive branches. Then, in each
function, we find the branches that do not need to be instrumented.
Finally, for those branches that need instrumentation, we assign a
unique sequential ID to each context-sensitive branch. This ID serves
as the index of the branch in the branch-counting table.

3.1.1. Static branch edge ID generation

In contrast with AFL++’s approach of assigning a globally unique
ID for each branch, we give each branch a relocatable function-local ID
by visiting every function in the program, traversing the branch edges,
and generating an incremental sequential ID statically for each branch.
Then we collect the number of branches in each function. We also
maintain an additional global function offset variable during runtime
that is updated when calling or exiting a function. Thus the offset for
each branch can be calculated by taking the function-local branch ID
plus the function offset. Thus, we can dynamically calculate the unique
branch ID using branch relocation depending on the specific function
context.

3.1.2. Calculate the number of context-sensitive branches

Let F be the set of all functions in the program, f € F be a function,
branch_count(f) be the number of branches in f, and context_count(f)
be the number of different calling contexts of f. Then the amount of
branches is

n= 2 context_count(f) - branch_count(f)

feF

We calculate branch_count(f) through the control flow graph of f.
Calculating context_count(f) is more involved:

To avoid the explosion of the number of calling contexts (e.g.,
caused by recursion), we consider only one-level context, i.e., the
context is determined by the call site only. Thus, we can determine
explicit call sites easily.

The Journal of Systems & Software 209 (2024) 111886

3.1.3. Indirect function call context generation

To assign function context offsets for indirect function calls, we
must identify all possible functions an indirect call site can call. To
determine implicit call sites precisely, we would need precise points-to
analysis. However, that is both difficult and expensive (Emami et al.,
1994; Steensgaard, 1996).

Therefore, to find possible function contexts within a reasonable
amount of time, we employ our method of approximating all candidate
values of function pointers in indirect call sites. First, we determine
the number of branch table entries that are required for each function
in each context by taking the maximum number of branches of all
functions. Then, we iterate over all function declarations in the program
or library and classify them according to their function prototypes.
Next, we find all operations that take the address of any function
and add the respective functions to the candidate list. Finally, we
find all candidate functions for each indirect function call site with
the same function prototype. We reserve the amount of branch table
entries required for each context. The function base offset is resolved
at runtime by matching the actual pointer value with all possible
candidate values.

3.1.4. Calculate the ID of each context-sensitive branch
Conceptually, for each function, we reserve a contiguous region of
IDs that can store all the context-sensitive branches in the function.
To implement this, during instrumentation,

« In each function f

— for each branch b, we sequentially assign a function-local ID,
1D(b), starting from 0.

— for each potential call site ¢, we sequentially assign a con-
text ID, I D y(c), starting from 0.

» We arbitrarily assign an order to all the functions, and assign an
ID offset, of fset(f), to each function in the following way: for
each function f;, we set its offset of fset(f;) = of fset(fi_)) +
context_count(f;_,) - branch_count(f;_,). We initialize of fset(f,) as
0.

At runtime, the ID of the context-sensitive branch (c, b) in function f
is:

of fset(f)+ IDf(c) - branch_count(f) + I D(b)

3.1.5. Redundant branch instrumentation removal

The benefit of instrumentation removal is twofold. First, it allows us
to shrink the branch count table’s size, reducing the memory overhead.
Besides, branch counting is a time-consuming job where the program
has to calculate the offset, fetch the entry, and save the result. If
we could reduce the number of reported branches without affecting
the distinguishability, then we can use the reduced branch counting
to same runtime by not reporting these edges. To that end, we wish
the path after instrumentation removal to be distinguishable from a
different path after compression. Here, we formally define path and
distinguishability:

Definition 3.1 (Path). For a program with a CFG, the set of all edges
are E. A complete path is a sequence of edges between basic blocks
that represents one execution of a program. A compressed path is a
subsequence of a complete path where only edges in E’ C E are kept.

Definition 3.2 (Distinguishability). Suppose we have two complete paths
P and Q, and their compressed paths P’ and Q’. P’ and Q' are said to
be distinguishable when P = Q if and only if P’ = Q’.

Y. Rong et al.

Table 1

The Journal of Systems & Software 209 (2024) 111886

Examples of path compressions in Fig. 1. Gray areas in column five means that we did not allocate memory for those edges. Notice how edge f

and h must be executed, thus there is no need to instrument them.

Path Compressed Compression Uncompressed Compressed

path rate Matcher table Matcher table

a b c d e f g h a b c d @ f g h

bfh - 100% 1 1 1
cefh c 75% 1 1 1 1 1
adbfgh ag 66% 1 1 1 1 1 1 1 1
cefggh cgg 50% 1 1 1 2 1 1 2
adadadbfggh aaagg 55% 3 1 3 1 2 1 3 2
adcefgh acg 57% 1 1 1|1 1 1 1 1 1 1
adcefggggh acgggg 40% 1 1 1 1 4 1 1 4

We do not need to instrument an edge if whether it is taken does
not distinguish two different paths. This introduced two requirements
for our instrumentation removal. First, for each loop, at least one edge
needs to be instrumented. Otherwise, we would not distinguish how
many times the loop has been executed. We use LLVM’s definition of
the loop' here and assume each loop has one and only one header
block. Besides, for any basic block, exactly one of its outgoing edges
needs no instrumentation. Because we can infer the status of that edge
from other edges’ status. For a basic block, if none of its instrumented
outgoing edge is executed, then the only one that is not instrumented
must be executed, and vice versa, if any instrumented edge is executed,
then the edge without instrumentation is not executed. To satisfy both
properties, we put labels on the edges before we instrument them.
Algorithm 1 shows the algorithm.

For instance, in Fig. 1, we only need to instrument and record the
visit counts of branches a, ¢ and g to sufficiently distinguish different
paths. Our algorithm would work in the following fashion to achieve
this result. Initially, all edges are labeled as delete. We iterate over all
loops’ header block(A and C) first and mark the loops’ outgoing edges(a
and g) as keep. Then for each basic block, we have exactly one outgoing
edge labeled as delete and mark others as keep. Thus only c is kept.
Notice that whether we keep ¢ or b does not change the branch table’s
size, nor the distinguishability of the instrumentation. We will prove
this property in Theorem 1. Finally, we instrument all edges marked as
keep, including branches a, c and g.

Table 1 shows how paths are compressed after our instrumentation
optimization. Column four of the table shows the branch counting table
if no compression is used. Each edge needs a counter to record how
many time it has been executed. On the other hand, with our path
compression we observe that only three edge need instrumentation,
shortening our table size from eight entries to three entries, saving
memory usage. Because many edges does not have a corresponding
counter, they do not report their execution at runtime, lowering our
runtime overhead. We find that the compression rate (column three)
can be as high as 50%, that means we can save more than half of the
runtime overhead. Finally, as we will prove in the following sections,
the distinguishability is not affected by compression, which removes
the necessity to convert the compressed path to the full path, since
we can directly compare the compressed path and differentiate two
execution traces.

We formally prove the algorithm’s correctness:

Theorem 1. Let P and Q be two paths. Let E be the set of all edges in the
CFG, and E' C E be the set of edges kept by Algorithm 1. Let P’ and Q'
be the compressed path of P and Q, respectively, generated from E'. Then
P=Qifand only if P' = Q'.

Proof. Necessity (the right direction): Since P = Q, their subsequence
on E’ must also be equal.

1 https://llvm.org/docs/LoopTerminology.html

Algorithm 1 Procedure for determining which branches to instrumen-
tation in a function.

1: function FINDEDGESTOINSTRUMENT(CFG)

2: Mark all edges as delete.

3 for Loop ! € CFG do

4 h « I’s header block

5 for Edge e = (h,b) € h’s outgoing edge do

6: Mark edge (h, b) as keep.
7
8
9

for Block b € CFG do
E = set of all outgoing edges of b
if Je, # e, € E, both are marked as delete then

10: Ve € E, mark e as keep
11: mark e, as delete
12: Instrument all edges marked with keep

Fig. 1. Examples of branches that do not require instrumentation. Only thickened edges
need instrumenting.

Sufficiency (the left direction): Prove by contradiction. Assume
P#Qbut PP=0Q. Let P=(A,p,...), O =(Aq,...), where A is the
longest common prefix of P and Q. Therefore, p, and ¢, are different
but they start from the same basic block B, so B must have n > 1
outgoing edges. Line 7-11 of Algorithm 1 guarantees that at least n—1
of the edges are marked keep, so at least one of p; and ¢, is marked as
keep.

If both p, and q; are marked as keep, then they both appear in E’,
so P’ =(A,p,,...)and Q' = (4. q,...) where A’ is the compressed path
of A. Since p, # q;, P' # Q’, but this contradicts our assumption.

If only one of p; and ¢, are marked as keep. Without loss of
generality, let p, be marked as keep. So P’ = (A, py, ...). The assumption
P’ = Q' implies that O = (4, q,, B, p;, ...), i.e., O contains a cycle (q;, B)
and no edge in the cycle is marked as keep. But line 3-6 of Algorithm
1 prevented this. [J

3.2. Compensated mutation assisted solver

While random mutation operators generally used by the AFL family
of fuzzers can quickly solve “easy” predicates, predicates with a small

https://llvm.org/docs/LoopTerminology.html

Y. Rong et al.

Table 2

Conversion table between branch predicate expressions, their corresponding objective
functions and solver targets. § represents the smallest possible positive value that the
numerical type can represent. For integers, § = 1.

Predicate Objective Angora’s constraint Valkyrie’s constraint
a>b f=b—-a f<0 <0

a<b f=a-b <0 <0

a=bhb f=a-b |f1<0 f=0

a>b f=b—a-6 f<0 £<0

a<b f=a-b-96 f<0 <0

atb f=a-b —-1f1<0 f<O0or f>0

feasible input space are difficult for them to solve, especially when the
predicate is an equality comparison. In Listing 1, num_components has
256 possibilities, thus 256 possible inputs to satisfy the comparison.
However, there are 2563 possible inputs for three bytes, making it diffi-
cult for fuzzers that randomly generate inputs. On the other hand, even
state-of-the-art fuzzers with a solver may fail because their assumptions
are not true.

Therefore, we need a new solver that properly handles the bounded
integer domain that largely exists in real-world programs.

We use the notation f(x) to represent its objective function for each
predicate. x is a vector determined by a subset of the input bytes.
The fuzzer maps input bytes to x using dynamic taint analysis tools
like DataFlowSanitizer (Anon, 2023a). The range of each dimension
of x is determined by its type, bit width, and signs, which Valkyrie
computes by static analysis. For simplicity, we refer to the maximum
and minimum value that can be represented by x; as min; and max;.

f is a blackbox function determined by the predicate, as shown
in Table 2. When the predicate becomes unreachable because a new
input alters the program path, we set f(x) to a value that violates the
objective. For example, when the objective is f(x) < 0, then we set
f(x) = +o00.

The effectiveness of state-of-the-art predicate-solving fuzzers implies
that many predicates in the program are solvable using principled
methods. For example, Angora assumes that the objective functions of
predicates are continuous, therefore it uses a gradient-descent-derived
solver. However, program inputs usually take the form of byte values
that are bounded and discrete. Therefore, solvers developed with a con-
tinuous range assumption require modifications to adapt to real-world
situations.

We design a compensated mutation technique that mitigates this
problem. The main idea of compensated mutation is when given a
target step 4x € R” that the solver wants to apply to the input, we
find a Ax" € Z" such that f(x + 4x) ~ f(x + 4x’). To do this, we clip the
fractional values that could not be applied to integer values and com-
pensate them to other components of the input vector. To demonstrate
how this approach works and its effectiveness, we apply this technique
to a gradient descent solver, albeit with some modifications.

3.2.1. Compensation from real domain to integer domain

Current methods resort to integer flooring when given a vector of
fractional numbers Ax € R" to apply to a vector of integer numbers.
However, we cannot guarantee that the floored value |4x]| will result
in a similar function value, especially when components have large
coefficients in the function. To avoid precision loss due to rounding
techniques of any kind, we wish to find an integer vector 4x’ € Z"
such that f(x + 4x) ~ f(x+ 4x’). The main idea behind the compensated
step is that for a Ax as well as its gradient on the function, we traverse
through each component, apply a suitable integer mutation value,
and compensate the fractional values that were not applied into other
components. We denote r; as the amount that we intend to add to
x; and 4x] for the actual integer value that is added. The difference
between r; and 4x] is the value that needs to be compensated to another

The Journal of Systems & Software 209 (2024) 111886

component of the input vector. We call this difference carry amount and
use notation ¢;. Thus we have:

— !/
¢ =r; — AX;

However, in many cases, it is not possible for the last dimension
to take fractional values or reach its upper bound. To ensure that the
function value remains the same, we introduce the concept of a “carry
amount” (¢;_;) to be added to the next dimension. If we applying
the carry amount (c;) to the ith component, the objective function
value should change by c;g;, where g; represents the partial derivative
of dimension i. However, since ¢; is a fractional value that cannot
be directly applied, we need to carry this amount over to dimension
j. In order to maintain the same change in the function value, we
should add another term of c;gi to the original value x;. As a result,
the representation r; of the ith dimension consists of two parts. The
first part is the original value x;, and the second part is the carry

amount from the last dimension, which is o221 \e can write the
compensation process in Eq. (1): '
¢ =0
r; = 4Ax,

Ci_ 18 (€8}
I‘,-=AX,-+ i—18i—1

i

¢, =r, — AX

i i i

Finally, to obtain the integer value Ax/, most of the time we use
4x] = |r;]. This is different than | Ax; |. As shown in Eq. (1), r; is the sum
of the target value 4x; and the amount carried over from the previous
component ¢;_; corrected by the fraction of gradients g;—". There are

. i
few exceptions where we do not floor r;:

(1) x; + [r;] > max;. This means we could overflow this dimension,
thus we set Ax| = max; — x;.

(2) x; + |r;] < min;. Similarly, we set Ax] = min; — x;.

(3) The carry amount ¢; is so large that all the dimensions will be
overflown by it. In this case we try 4x] = [r;].

It is not hard to derive the following relation using calculus and
Eq. (1):
fx+)~)+ g ax = F)+ Y g —c)
Ci18i—
= F0+ Dl - Ax; +g; - Bl g
7 8 @)
=0+) Axg - g,c,
i

=f(x+4x) - g,c,

Therefore, the loss of our method can be as low as |g,c,|. In practice,
we use a permutation matrix to sort the components in the descending
order of the absolute value of their gradients for the following reasons:

(1) Since in most cases ¢;_; < 1, we need g1 5 1, otherwise the
compensation will not affect r; too much.”

(2) We also want %=L to be as small as possible, so it would not
amplify r; too much that we have to push x/ to its bound.

(3) Asshown in Eq. (2), a small |g,| would reduce the error incurred
by compensated step.

The whole process is described in Algorithm 2. First, we sort the
inputs based on the gradient. Then we calculate r; for each dimension
based on Eq. (1). We then choose 4x’ based on r; as described before.

This method is applicable to any solver that can obtain the gradi-
ent of each input component. The gradient can be obtained using a
variety of methods, such as using white-box analysis and receiving an
explicit expression, or through numerical methods to approximate the
gradient. In our approach, we use a numerical estimation. In the fol-
lowing section, we describe our modifications for improved numerical
differentiation in real-world fuzzing scenarios in the following part.

Y. Rong et al.

The Journal of Systems & Software 209 (2024) 111886

Algorithm 2 Compensated step

Algorithm 3 Descent routine

1: function CompeENSATEDSTEP(X € Z", AX, g € R")

2: P < Permutation matrix s.t. Vi < j,|Pg;]| > | Pg;|

3: X « Px

4: Ax <« PAx

5: g« Pg > Sort dimensions in the descending order of the absolute
value of the gradient

6 ¢y < 0,8, « 1

7 for i in 1..n do

8: r; < Ax; + c"‘gg"'

9: Ax! = |r,] '

10: if x; + Ax/ > max; then

11: AX] = max; — X;

12: else if x; + Ax] < max; then

13: AX] = min; — X,

14: else if r; — Ax] is too large for the rest dimensions then

15: Ax) = [r;]

16: ¢, =r; — A%/,

17: return P~'Ax’

3.2.2. Compensated gradient descent

With the compensated step, here we modify the traditional gradient
descent solver to tackle real-world scenarios. Although compensated
step can be applied to any solvers, we find gradient descent better
suited for our needs. Compensated step heavily rely on a gradient to
work, which is the same for gradient descent.

Modified differentiation for a more accurate gradient. Since
the predicates’ mathematical expressions are unknown and we treat
them as black-box functions, we cannot derive a gradient symbolically.
However, the traditional differentiation method lack accuracy since a
valid gradient’s absolute value may be less than 1. For example x =
5, f(x) = |x/4], where flooring the result is the semantic of integer
division in C programs. In this case, we find f(x+1) = f(x) = f(x—1) =
1 and end up with zero gradient. We need an approximated gradient
instead of a zero gradient to keep the algorithm going.

Therefore, to obtain the partial gradients of a particular predicate,
we use a modified numerical differentiation method on each dimension
to derive a partial gradient. When calculating differentiation for dimen-
sion i, we create a unit vector e; € R" where only the ith element is 1
and all other elements is 0. We add and subtract x with this ¢; and
observe f’s value change to derive a gradient.

Furthermore, we introduce amplifiers , and f_ to increase the unit
step size. g, and g_ starts with 1. We keep doubling g, and g_ until we
find a non-zero f(x + f,€;) — f(x) or f(x) — f(x — f_e;). Then we can
compute the gradient in the ith dimension, g;, using Eq. (3):

fx+p.e)— f(x—p_e)

= 3
g Y 3

If the amplifier g grows very significant without finding a practical
value, we consider the gradient to be zero. § is considered large if
B> %(max,- — min;). If both directions turn out to be zero, we assume
this direction to have zero gradient. By repeating this process on all
dimensions, we get a differentiation vector g.

Determine the step size in descent. In the state-of-the-art solver,
it takes a step Ax = —ag to descend in each iteration. However, it
is challenging to set a. If we set it too small, x may move slowly or
even stagnate. For example, f(x) = [x/4], if we move x by 1, f(x) will
not change. But if we set it too large, we may overshoot, causing the
function to descend more than intended.

Therefore, we take the advantage of the fact that given a small step
Ax, f is approximately linear. There is an e ball B.(x) such that for
small enough ¢ € R such that given ||4x]||, < ¢, g being the gradient,
we have

Fx+ 4% ~ f(x) + g Ax

Require: f

1: function Drscent(x, g € R")

2 v < max(1, min; S.t.g#0 |g:)

3 a<—v/g'g

4 X =X e = [y,

5: loop

6: Ax’ «—COMPENSATEDSTEP(X,,,,,,., —Ag, &)

7 Xeurr < Xeurr AX” fcurr = f(xcurr)

8 if f,,, = 0 OF |f,0| < |feu,| then > Next step does not exist or
the function is not descending.

9: return x,,,,

10: else if IsSoLven(f,,,.) then

11: return x,,.,.

12 €20, Xy < Xeurrs Fyres < Lo

We select an « such that f(x) will change approximately by the
smallest possible increments or decrements.

v = max(1, min(|g,|))
2,40
, 4

g'e

If v is small, f(x—ag)— f(x) ¥ —v by Eq. (2). We introduced a minimum
non-zero gradient g, because if |g,| > 1, the minimal change possible
to f(x) is |g,| instead of 1, since f(x) is a discrete function. In each
iteration, we double the step size to descend quicker. We revert the
descent parameters to the initial state when we can no longer descend.
For non-linear functions, we could recalculate gradient in every
step. However, since each dimension’s gradient calculation requires us
run the program under test a few times, calculating gradient is very
expensive. We recognize that there are three possible outcomes for non-
linear predicates. First, the execution path changes and the predicate is
unreachable. In this case, we have no choice but to stop descending
and use the value from the previous step as a result, a new gradient
will be calculated later. Secondly, the function value may drop less
than expected or even increase. We test if the new function value is
still descending; if not, we return the previous step and recalculate
the gradient. Finally, the function value may drop more than expected.
Since our goal is to do gradient descent instead of keeping the function
linear, we are fine with this step and keep going until we run into

previous two cases.
The overall modified gradient algorithm is listed in Algorithm
3. We start by calculating the step size using Eq. (4). Then we would
decide whether to ascend or descend based on the current status of
the function. Once the actual step Ax is determined, we calculate the
compensated step using Algorithm 2. Finally we apply the integer step.

3.2.3. Solving motivating example

In the case of the example in Listing 1, we first formalize it as
“given f(x) = gl'x — 8, find X5 S-t. f(X,,) = 07 Suppose the input has
been sorted by gradient, thus g = [256,—3, 1] and the initial point is
Xinir = [0, 1, 13], f(X;5) = 2.

We start with v =1,a = gT”g, i.e. we try to decrease function’s value

by only 1. The first dimension will have r, = 4x, = —£L. We find x,

. elg’
is already 0 and cannot decrease more.

Thus we carry all the r; to the next dimension, i.e. ¢; = r;, =
8L Ax =

e dn =0 L

¢, is then applied to the next dimension, thus we have r;,:

c
r, = Ax, + 18 _ & g1 8

2 g’eg glge
11 11

=—— (gt =————(g-g)
melg ' Y melg }
|

1
=-(- —
3(ng)

Y. Rong et al.

r, is again floored to 0, leaving ¢, = r,, Ax; =0.
Interestingly, we have

¢
ry = Ax, + 282 =—++g21 1 ;
g g's 23 g'g
1 1
= (1= —)=-1
g'e g'g
Therefore Axg = —1 and we end up with 4Ax’ = [0,0, —1]. This would
give us x = [0, 1, 12], f(x) = 1. Since the descent is successful, we would
double the step size, i.e. set v = 2 and descent again. Following a similar
process would give us x = [0,1,10], f(x) = —1. Because the absolute
value is not descending, we would abort the descent instead of taking
the step. We calculate the gradient again and restart using v = 1. The

final step would give us Xoq = [0, 1,111, f(x,4) = 0.
3.3. Proactive bug exploitation

Current exploitation methods employed by state-of-the-art fuzzers
such as AFL++ are merely best efforts, which are generally based on
heuristics and magic byte insertions. These methods are ineffective
when exploiting bugs that require non-trivial triggering conditions.
Instead, we extend the predicate solver which is designed for program
exploration into the domain of bug exploitation. We identify and des-
ignate exploit predicates, which are possible exploit points transformed
into a predicate that the solver can handle. When exploit predicates are
solved, they trigger a bug instead of explore a new path. The proactive
bug exploitation process is divided into exploit point identification
through static analysis and exploit predicate solving during fuzzing.

3.3.1. Exploit point identification

During static analysis, we identify susceptible instructions that have
a probability of triggering a crash as exploitation points. For each possi-
ble exploitation site, we identify an exploitable value, i.e., a value that
will trigger a crash at this point, where we instrument predicates for the
solver to try triggering these bugs. Here, we select three exploitation
cases where an architecture failure will be triggered:

Divide by zero. The relevant susceptible instruction takes the form
of a division operation, specifically result = dividend/divisor.
We instrument a predicate divisor == 0 so that the solver will try
to move the divisor to zero. In practice, we find programmers will
most likely check if divisor is zero, while forgetting the possibility
that the divisor can overflow to zero. Therefore, we instrument another
predicate divisor == MAX + 1.

Memory indexing. If the memory index is larger than the size of the
buffer, there may be a buffer overflow. Although buffer size is hardly
known at runtime, all we need is to guide the solver to push the index
to a higher value. The solver either finds it impossible due to index
checks in the program, or trigger a buffer overflow. For each indexing,
we instrument a predicate idx > MAX.

Memory allocation. If the size of memory allocation is not sanitized
properly, a memory corruption can happen. There are two possibilities.
If the allocated memory is less than desired, then it may result in a
future buffer overflow, which may happen when the argument over-
flows to a small value. For example, malloc ((uint8_t) (257))
only allocates 1 byte of memory instead of 257 due to integer overflow.
On the other hand, large allocation size requests may result in resource
exhaustion, leading to the program being killed or returning a null
pointer that may not be properly sanitized. This can happen when
malformed or malicious inputs are processed without proper checks
within the program or an integer underflow, for example malloc (10
- 12). Therefore, we instrument two predicates: size > MAX and
size < 0. One predicate targets a very large allocation size while the
other targets an integer underflow.

The Journal of Systems & Software 209 (2024) 111886

3.3.2. Exploration prioritized scheduling

We observe that if the buggy code cannot be reached by the fuzzer,
then the bug cannot be triggered regardless of the resources spent on
exploitation. Therefore, we prioritize exploration over exploitation so
that we will have a better chance of triggering bugs. In each round
of fuzzing, we always try to solve exploration predicates first, we only
start trying exploitation predicates after we exhausted exploration pred-
icates. We achieve this by always setting exploitation predicates with
lower initial priority. Since state-of-the-art fuzzers are using priority
queue to do scheduling, our approach brings no overhead to the fuzzer.
What is more, this approach guarantees that the solver will attempt to
solve exploration predicates before proceeding to trigger exploit points.
In our experience fuzzing Magma dataset (Section 4.1), the solver will
attempt on all exploit predicates at least once except for a few trials.

On the other hand, we realize that most exploit predicates are
infeasible since each one of them represents a bug. Therefore, spending
too many resources on exploitation in a fuzzing campaign is unwise.
Because our solver is deterministic, we will discard an exploit predicate
after one attempt, as we have no reason to believe the second attempt
will work. One exception is that we may find a predicate with different
initial points. Since some predicates can be non-convex, the solver will
try to solve the same predicate with different initial points.

4. Evaluation

We are interested to know how well Valkyrie works in practice. We
implemented Valkyrie to conduct a series of experiments to analyze
the effectiveness of the entire fuzzer and individual components. We
borrowed from Angora the dynamic taint tracking framework and
instrumentation base code. We used the LLVM compiler framework for
program analysis and instrumentation. However, the branch counting
algorithm and the solver are independent of Angora’s. The implemen-
tation of our branch counting mechanism uses gllvm (Anon, 2022)
to consolidate the program’s compiled LLVM IR into one module,
allowing for full-program analysis. We have open-sourced Valkyrie,
including all docker images and seeds used in evaluation to Github:
https://github.com/organizations/ValkyrieFuzzer.

We propose the following research questions to help us understand
the results and implications of our designs:

RQ1: Is Valkyrie state-of-the-art? How does it fare on benchmarks
such as Magma?

RQ2: How does Valkyrie perform against similar fuzzers on real-
world open-source programs?

RQ3: Is our branch counting mechanism a better trade-off than
that of AFL++ or Angora?

RQ4: Is the solver assisted with compensated step better?

RQ5: Can branch counting and solver contribute to bug finding
in real world applications?

To answer these questions, we designed experiments to examine
Valkyrie’s performance on Magma and a select group of open-source
programs. We then conducted two close examinations to address the
latter two questions adequately.

First, we test Valkyrie on benchmark Magma v1.1 (Hazimeh et al.,
2020), then on real-world programs. We intend to test Valkyrie on a
more robust benchmark FuzzBench (Metzman et al., 2021), but Angora
is not provided in the benchmark. The reason is that FuzzBench only
allows programs to be compiled once, but Angora requires two compi-
lations to generate two versions of binaries. For fairness of the testing,
we borrow the framework from Unifuzz (Li et al., 2021) to test real-
world programs. Each fuzzer runs in a containerized environment with
one core. Each experiment lasted 24 h and was repeated ten times, as
suggested by Hazimeh et al. (2020). In both experiments, we select AFL,
AFL++, and Angora for comparison. We choose AFL as the reference
fuzzer since it is a source of inspiration for many others. We also include

Y. Rong et al.

Table 3
The list of fuzzers we used in our evaluation. Included are their respective versions
and the arguments we provided to invoke the fuzzer.

The Journal of Systems & Software 209 (2024) 111886

Table 5
Average time used to trigger a bug in Magma. Bolded text shows the fastest to trigger
a bug.

Package Version Arguments Bug ID Valkyrie angora aflplusplus moptafl afl
afl 2.57b -m 2048 -t 1000+ AAHO37 15s 15 s 39 s 20 s 20 s
MoptAFL commit 339a2le -m 2048 -t 1000+ AAHO41 15 s 15 s 1m 33s 21s
aflplusplus 3.01a -m 2048 -t 1000+ JCH207 5m 16 m 3m 1m 53 s
angora commit 3cedcac -M 2048 -T 1 AAHO55 4 h 8 h 27 m 4 m 43 m

AAHO15 7h 6 h 4 m 1m 1h

MAEO16 20 s - 1m 1m 3m
Table 4 AAHO20 8 h 11h 2h 23 m 3h
The list of projects we used in our evaluation. Included are their respective versions, MAEOO8 20 s - 6 h 27 m 5m
the binary we used and the arguments we provided to invoke the binaries. AAHO24 15 s 15 s 1m 16 h -

Package Version Program Arguments AAHO45 49s 15s 15h 3h -

" - - MAEO14 20 s - 23 h 2h 2h
libjpeg-ijg vad cipeg ee AAHO32 5h 21h 1h 28 m -
et g'g'jz fh”g"d‘f" fee MAE104 3m 2m 22h 13h 16h
L_ea 0 538 Jhea (2@ AAHO14 20 h 5h 21 m 21 h 14 h

inutlls - nm cee AAHO26 46's 40's 22 h 22 h -

binutils 2.35 objdump X @@ AAHOO7 im 2m 22 h _ B
EPdf N o Pdf;‘"f’“ ee MAE115 9h 15h - 19h 12h
Dt 2% readelf aee AAHO17 7 h - 21h 10h 20 h

inutils : size ee JCH201 4h - - 19h 21h

libpcap/tcpdump 1.9.1/4.9.3 tcpdump -e -vv -nr @@ AAHOO1 1h _ 23 h _ B
libxml 2.9.10 xmllint @@ AAHO10 22 h B oh _ _

. . . 1 | // AAHOO1
AFL++, which has merged many improvements anq function enhance- > |size_t row_factor_1 = 1 + (png_ptr->interlaced? 6: 0)
ments developed for AFL. We enabled llvm_mode, with AFLfast’s power 3 | + (size_t)png_ptr->width
scheduling (Bohme et al., 2019), MOpt’s mutator (Lyu et al., 2019), and 4 * (size_t)png_ptr->channels
non-colliding branch counting for AFL++. Angora is also a solver-based ~ 5 | * (png_ptr->bit_depth > 87 2: 1);

. o . . . 6 |size_t row_factor = (png_uint_32)row_factor_1;
fuzzer with similar design goals to Valkyrie. We intend to compare to 7 | it (png_ptr->height > PNG_UINT_32_MAX/row_factor)
one of Angora’s successors Matryoshka (Chen et al., 2019). However, {...}
the tool is not available to us. Table 3 shows the fuzzers’ versions and 8 |// MAEO14

. 9 char *dir_start = value_ptr + maker_note->offset;
arguments, Table 4 shows the versions and arguments of targets we ;) | i+ yumDirEntries = php_ifd_get16u(dir_start

fuzzed.
4.1. Magma benchmark

To test whether Valkyrie is state-of-the-art, we would like to work
on a benchmark with ground truth first. We examined Valkyrie’s per-
formance against other popular fuzzers on Magma v1.1 (Hazimeh
et al., 2020). Magma is a collection of targets with real-world envi-
ronments. It contains seven libraries and 16 binaries. Magma manually
forward-ported these bugs in older versions to the latest versions.
Unlike LAVA-M (Dolan-Gavitt et al., 2016) where all bugs are synthetic
and magic byte comparison, Magma has a spectrum of bugs covering
most categories in Common Weakness Enumeration (CWE). Magma
contains 118 bugs in total. There are 15 integer errors, six of which
are divide-by-zero, and 58 memory overflows. The rest 45 bugs include
use-after-free, double-free, O-pointer dereference, etc.

However, Angora is a coverage-guided fuzzer that is not designed
to trigger bugs. We borrow ideas from Rong et al. (2020), Anon
(2023b), for each potential bug, e.g. buffer overflow, we would insert
a branch if (ptr > buf_len)report(); so that Angora can see and solve
the predicate. Therefore, for a fair comparison, we only tested on 15
integer errors and 58 memory bugs that can be converted to a predicate.

MoptAFL is also reported to be the best in the benchmark (Hazimeh
et al., 2020), therefore we included MoptAFL in this evaluation. We
used the version provided in the benchmark. We want to see how
Valkyrie compares with the state-of-the-art fuzzers.

We list Valkyrie’s performance on Magma in Fig. 2. We calculate
the arithmetic mean number of bugs found per trial per day. However,
state-of-the-art fuzzers rely on randomized methods, a bug found in one
trial may not be triggered in the another. Therefore, we also list all the
unique bugs found, including bug id and the time used to trigger it in
Table 5. The time shown is the arithmetic mean time to trigger a bug.
If the fuzzer did not trigger a bug, then the time to trigger is set to
24 h for that fuzzer. Therefore, for non-deterministic fuzzers, the mean
time to trigger a bug becomes large when the bug is triggered only a

ImageInfo->motorola_intel);

Listing 2: Two seemingly easy bugs AAHOO1 and MAEO14 in Magma.
Valkyrie can trigger this bug in seconds while other fuzzers can take
hours.

few times. For example, AFL++ triggered the bug AAHOO1 in a few
minutes in only one trial, so the mean is 23 h across 10 trials.

Valkyrie finds 21 unique integer and memory errors in Magma,
while AFL, ALF++, MoptAFL, and Angora found 14, 19, 18, and 14
errors, respectively. Overall, Valkyrie ranked #1 and found 10.5% and
50% more errors compared with AFL++ and Angora, respectively. We
conduct the Mann-Whitney U test to obtain p-value between each
pair of fuzzers and list the significant plot of Valkyrie in Fig. 3. Of 7
libraries, Valkyrie ranked #1 on libpng, libxml2, and poppler (p < 0.001
compared with #2); tied #1 on openssl and php (p < 0.01 compared
with #3); tied #2 on libtiff. No fuzzer found any integer or memory
errors on sqlite3. We want to emphasize that Valkyrie achieved the
result with no randomization design.

Bug AAHOO1 demonstrates that not only randomness is not required
in certain bugs, but also that compensated steps can be effective in
predicate solving. AAHOO1 is a divide-by-zero in libpng. We listed the
code snippet of AAHOO1 in Listing 2. To trigger it the mutator must
change png_ptr->width to 0x5555_5555 and png_ptr->channels to 3,
and the later two conditions to false. Hazimeh et al. (2020) proved
that it is hard for the randomized method to trigger it and claimed
that only a fuzzer with a solver could trigger this easily. However,
Angora failed to trigger it. When Angora mutates the value close to
0x5555_5555, even a small step in png_ptr->channels will overshoot
and overflow the result. For example, when setting png_ptr->channels
to 4, the result will be a small value due to overflow; when setting to 2,
the result will be a large value. Angora may conclude that this variable
has negative gradient and start moving it to a smaller value. When

Y. Rong et al.

The Journal of Systems & Software 209 (2024) 111886

51 l of|
mm aflplusplus
4 I angora
B moptafl
° mm valkyrie
o 3
[
()]
o
w21
o
=3
o
) I
0- “

libpng libtiff libxml2

Fig. 2. Arithmetic mean
across ten trials.

libpng libtiff libxmlI2
afiplusplus afl afl afl
aflplusplus aflplusplus aflplusplus
angora angora angora angora
X moptafl moptafl moptafl
valkyrie valkyrie valkyrie valkyrie
o
- EERSR R
S > a > [
. 5283 gess
s ° > 2" E> s E>
® ® ©

Fig. 3. Significant plot of Valkyrie. Valkyrie is superior than state-of-the-art on libpng,

it happens, Angora may get the wrong gradient and cannot progress
correctly. However, Valkyrie knows the upper bound of the unsigned
value and forces the solver not to exceed it using compensated steps.
Thus Valkyrie is able to solve it and triggered this bug within the hour
in all ten trials.

Valkyrie is also the first to find many of the bugs compared with
its peers. The reason is that solver-based fuzzers work on predicates
in a more orderly manner. Randomized methods can be choked by a
predicate, not knowing if it is a hard one or just infeasible, wasting its
time budget. However, Valkyrie can report with confidence whether the
predicate can be solved and explore a new path or report it unsolvable.
One example is MAEO14 as shown in Listing 2. dir_start is a pointer
to the buffer and php_ifd_get16u tries to get a u16 from the buffer.
However, it does not check whether dir_start is pointing to the last
byte of the buffer, causing the code to over-read one byte from the
buffer. In the case of Valkyrie, it will try to increase the index of the
read by setting up a predicate dir_start+1 > MAX, thus triggering the
bug in 20 s. However, it generally takes fuzzers in AFL family hours to
trigger it. Furthermore, these two examples demonstrate that our design
in Section 3.3 is effective.

Valkyrie found four unique errors on libtiff (AAHO10, AAHO14,
AAHO15, and AAH020), the same number as other state-of-the-art
fuzzers. However, on average, only three errors are triggered per trial
because 24 h timeout is not enough for Valkyrie. The seeds correspond-
ing to AAHO10 and AAHO14 are scheduled with the same priority.
There is no guarantee which one is taken out first. In any trial, if one
seed was taken, the other would not be taken before timeout. Thus the
mean time to trigger these two bugs are both 20+ hours.

We want to comment on another interesting finding regarding
MoptAFL and AFL++. MoptAFL is reported to be the best fuzzer in
this benchmark, however, in our experiment, MoptAFL found fewer
bugs than AFL++. We carefully compared Hazimeh et al. (2020)’s result
with ours and find that, in our experiment, AFL++ found several bugs
that were reported as untriggered. Some examples include AAHOO1,
AAHOO7 in libpng, both of which are only triggered once by AFL++
across ten trials. The difference is surprising considering we used the
same configuration provided by Hazimeh et al. (2020). This further

openssl| php poppler

Targets

10

of number of integer and memory bugs triggered per trial per day. The black line shows 95% confidence interval. Valkyrie’s performance is the same

openssl| php poppler
afl afl NS
aflplusplus
aflplusplus
angora p < 0.05
moptafl moptafl p <0.01
valkyrie valkyrie
LRE .. el e <0001
R - F28Es
[=3 g &
928 g8 % 288 %
s°E% 2 B> 2 E>
= & ©
© © ©

libxml2, and poppler.

proves that randomized methods are volatile and unstable, while our
deterministic approach is simpler and more reliable.

In summary, Valkyrie found 21 unique integer and memory errors
on Magma, the most compared with other state-of-the-art fuzzers.
Also, Valkyrie had little to no variance across ten trials, while
others showed unstable performance. Therefore, we can answer
RQ1 with confidence that Valkyrie is state-of-the-art on Magma.

4.2. Real-world open-source programs

While performing well on Magma is sufficient to claim Valkyrie
is state-of-the-art, we would like to evaluate on real-world programs
and see the branch coverage data. Therefore, to demonstrate Valkyrie’s
effectiveness on real-world programs already in production, we selected
a series of open-source programs to evaluate Valkyrie and demonstrate
the effectiveness of its methods and techniques in real-world situations.
Of these open-source programs, there are image processors (jhead,
imginfo), binary file processing programs (nm, objdump, size, readelf),
structured text parsing utilities (xmllint), pdf parsers(pdftotext), net-
work utilities(tcpdump). Because different tools count branches differ-
ently, for fairness of comparison, all branch coverage reported are
generated by afl-cov (Anon, 2018).

The results of these experiments are shown in Fig. 4. We obtain
p-value between each pair of fuzzers using Mann-Whitney U test.
Valkyrie ranked #1 on seven out of ten applications (p < 0.01 compared
with #2), #1 tied with Angora (p = 0.0011 compared with #3) on jhead,
#2 on cjpeg and imginfo (p < 0.05 compared with #3).

We also plotted the branch coverage against time in Fig. 5. Valkyrie
is the fastest fuzzer in all programs except imginfo, i.e., Valkyrie spends
less time to reach the same branch coverage compared with other
fuzzers. This trend is clearest in objdump, readelf, and size. It further
demonstrated the effectiveness of deterministic algorithms we intro-
duced in branch counting and solver. While state-of-the-art fuzzers
are mutating randomly without knowing the detail of the program,
Valkyrie can flip a predicate within several steps.

Y. Rong et al. The Journal of Systems & Software 209 (2024) 111886
- elkyrie W afl aflplusplus W angora WEE valkyrie-br EEE valkyrie-solver
cjpeg imginfo Jjhead nm objdump
900
== 3600
650 3000) 480 ﬁ %* - = ? 3200 satem =
@ 3300
5 400 +-
£ 800 é 3200 == 3000 B 2800 E
5 . .
750 = l = 2800 320 2700 é 2400
.
- -3
700 2400 240 2400 . 2000 r
pdftotext readelf size tcpdump xmllint
2000 i 5000 R 2600 ? 13500 ¢ + 5500 ﬁﬁ
1750 e Y0 i == 290 é 12000 000
< =
E == ==
5 4000 = , 2200 ‘ 4500
5 1500 ¢ =
3500 2000 10500 4000 =
1250 ‘ ? ==
3000 - 1800 === 9000 3300 —

Fig. 4. Branch coverage of six fuzzers in 24 h time. Valkyrie-br is Valkyrie with only branch coverage improvement, Valkyrie-solver is Valkyrie with only solver improvement.
Both design increased branch coverage compared with Angora in all programs. Overall, Valkyrie ranked #1 on geometric mean number of branches reached.

mm valkyrie . ofl
cjpeg imginfo
800 | 3600 480
<
Esoo 3000 400
S
400 2400 320
240 =
200 1800
Oh 6h 12h 18h 24h Oh 6h 12h 18h 24h oh
pdftotext readelf
2100
5000 2400
1800 4000
< 2000
g 1500
g | 3000 1600
S 1200
2000
900 1200
1000
Oh 6h 12h 18h 24h Oh 6h 12h 18h 24h oh

aflplusplus BN angora
jhead nm objdump
3600
3200 3000
2400 2400
I
1600 1800
1200
800
6h 12h 18h 24h Oh 6h 12h 18h 24h Oh 6h 12h 18h 24h
size tcpdump xmllint
15000 5600
12000 = .
e 9000 2000
6000 3200
3000 2400
6h 12h 18h 24h Oh 6h 12h 18h 24h Oh 6h 12h 18h 24h

Fig. 5. Branch coverage of four fuzzers in 24 h time. Valkyrie not only finds more branch coverage but also is the fastest one on eight of ten applications thanks to deterministic

algorithms.

In summary, the geometric mean number of branches Valkyrie
reached per target is 2452, 8.2% and 12.4% more than AFL++
(2266) and Angora (2181), respectively. We can answer RQ2
with confidence that Valkyrie is the state-of-the-art on real-world
open-source programs.

4.3. Effectiveness of deterministic branch counting

We wish to understand the advantages of Valkyrie’s branch count-
ing mechanism quantitatively. We first controlled the variable to see
how much improvement collision-free context-sensitive branch count-
ing design contributes. Therefore, we disabled our improved solver
and compared it with Valkyrie and Angora. The result is shown in
Fig. 4, the modified version is labeled as Valkyrie-br. We find that
Valkyrie-br outperformed Angora in all cases, proving that this de-
sign is effective. Our study shows the improvement is contributed
by two designs: branch instrument optimization and context-sensitive
collision-free branch counting.

We first examined the effectiveness of our branch table optimization
strategies by obtaining the buffer sizes required by Valkyrie, as shown
in Column 2-4 in Table 6. We observe that our optimization strategies
can reduce the bitmap size by 69% on average. We used seeds gener-
ated by AFL++ to evaluate how much runtime is reduced. Column 5-7
in Table 6 show that we reduced runtime by 28% on average. Thus,
given the same amount of time, Valkyrie can test the program more.

We then analyzed the buffer utilization rates of AFL and Angora
under the evaluated programs. By default, AFL uses a 64 K buffer.

11

Angora uses 1M to allow context-sensitivity. The utilization rate is
shown in Columns 2 and 4 in Table 7. Many programs’ utilization
rates exceed the recommended limit of 4%, even ranging up to nearly
34%, indicating that a newly found branch has a nearly 34% chance
of colliding with existing branches. Under the default settings, many
instances have a high potential for branch collisions, as evidenced by
the high bitmap utilization rate of up to around 36%. Therefore, the
default buffer sizes are too small for ordinary programs.

We further resized their bitmaps according to the size required by
Valkyrie to achieve collision-free branch counting and analyzed their
utilization rates. Their bitmap sizes should be a strict power of 2, so we
found the closest value possible for each program, as listed in Column
7 in Table 7. We list the utilization rate under such sizes Column 3
and 5 in Table 7. The utilization rates have dropped to under 4% since
we increased AFL’s buffer size for most programs. However, AFL lacks
context-sensitivity and can potentially lose the capability to identify
branches that increase the overall coverage. Angora, on the other hand,
still exceeds the recommended limit greatly in many cases, resulting in
significant accuracy loss. In comparison, Valkyrie guarantees accuracy
while maintaining context-sensitivity, which is the second reason why
the branch coverage increased in Fig. 4.

Therefore, we can answer RQ3 with confidence that Valkyrie’s
branch counting mechanism is a better trade-off and outperforms
that of comparable fuzzers.

Y. Rong et al.

Table 6
Bitmap size for Valkyrie before and after optimization. On average we reduced 69%
of all instrumentations and 28% of runtime.

Program Valkyrie bitmap size (B) Valkyrie bitmap runtime (ps)
Original Optimized Reduction Original Optimized Reduction

cjpeg 254874 74576 70.74% 10331 7918 23.35%
imginfo 133010 34690 73.92% 20769 12583 39.41%
jhead 13620 4396 67.72% 1124 776 30.92%
nm 1758594 542688 69.14% 1491 1270 14.84%
objdump 2196528 691048 68.54% 1405 1374 2.24%

pdftotext 400858 112808 71.86% 6312 5663 10.29%
readelf 353222 132352 62.53% 1229 902 26.57%
size 1750206 540180 69.14% 1687 1359 19.44%
tcpdump 1554400 506468 67.42% 1278 972 23.93%
xmilint 3323032 996220 70.02% 1439 1115 22.52%
Total 11738344 3635426 69.03% 47065 33932 27.90%

Table 7

Bitmap utilization for AFL and Angora on open-source programs. We evaluated their
respective utilizations under default sizes and adjusted sizes. “*” indicates failure, AFL
refuses to run jhead with only 8 K bitmap.

Program AFL utilization Angora utilization Bitmap size (B)
Default (64 K) Adjusted Default (1.0 M) Adjusted Valkyrie Adjusted

cjpeg 2.11% 1.06% 0.24% 1.88% 74 K 128 K
imginfo 10.23% 10.30% 1.68% 23.94% 34 K 64 K

jhead 0.45% * 0.54% 49.51% 4.2 K 8.0 K
nm 7.92% 0.49% 33.14% 33.14% 542 K 1.0M
objdump 5.26% 0.33% 24.98% 2496% 691K 1.0M
pdftotext 3.30% 0.83% 18.88% 56.67% 112 K 256 K
readelf 10.92% 2.73% 4.05% 15.24% 132 K 256 K
size 4.49% 0.28% 14.75% 14.72% 540 K 1.0 M
tcpdump 20.85% 2.59% 34.64% 57.13% 506 K 512K
xmllint 6.51% 0.41% 18.30% 18.29% 996 K 1.0 M

4.4. Effectiveness of deterministic solver

In Fig. 4, we evaluated Valkyrie with only solver enabled. The
modified version is tagged as Valkyrie-solver. Since Valkyrie-solver
and Angora have the same scheduling algorithm and branch counting
method, comparing them will tell us how much improvement our solver
had.

The result shows that we improved branch coverage compared with
Angora in all open source programs. We obtained p-value for each
program using Mann-Whitney U test, all of them showing less than 0.02
except for jhead, where branch coverage is statistically insignificant. On
geometric mean, Valkyrie-solver reached 2608 branches, 19.5% more
than Angora (2181 branches). On readelf and size, Valkyrie-solver even
ranked #1 compared with all other fuzzers.

On average, Valkyrie-solver can execute more branches than An-
gora. This gives us a positive answer to RQ4, the compensated
step does improve the solver performance.

4.5. Bug finding ability of valkyrie

In Section 4.1 we find that Valkyrie can find most memory and di-
vide by zero errors compared to the state-of-the-art. Although examples
like AAHOO1 have demonstrated solver’s effectiveness, we wish to carry
out a more detailed study to understand each components individual
contribution to bug finding in real-world settings. We first instrument
programs in Unifuzz (Li et al.,, 2021) using the approach described
in Section 3.3, then compiled these programs using Angora, Valkyrie,
Valkyrie-br, and Valkyrie-solver. Similar to previous evaluations, we
run each fuzzer for 24 h and ten times. After fuzzing we collect all errors
the fuzzers found, deduplicate them and found the following bugs in
three programs. The detailed bugs are listed in Table 8.

®NOU D wWwN =

12

The Journal of Systems & Software 209 (2024) 111886

We find that Valkyrie is able to find six bugs while Angora only
found three. Valkyrie-br and Valkyrie-solver found four and five bugs
respectively. The main difference comes from three assertion failures
in imginfo. The first and second assertion failure are gqmfbi
JPC_COX_RF and absstepsize >= 0, which can be solved by magic
byte matching quickly, thus all fuzzers triggered it. However, the third
assertion failure is ! ((expn + (numrlvls - 1) - (numrlvls - 1
- ((bandno > 0) ? ((bandno +2) / 3) : (0)))) & (~0x1f)),
which involves three variables and a nested condition. Such predicate
requires that the last five bits of the result are not all zeros. Tradition
solvers like Angora’s struggle to calculate the gradient when it reaches
the boundaries, thus unable to solve it. On the other hand, only Valkyrie
and Valkyrie-br triggered an out of bound read. After some study we
find that the program attempt to access a buffer without checking the
index, Listing 3 We find that using Angora’s branch counting, the loop
back edge collided with other edge. When the other edge is executed
repeatedly, Angora had no motivation to increase the iteration of the
loop, since to Angora’s eyes this has already been executed. Since there
is no collision in our branch counting, Valkyrie will try to increase the
number of iteration until its greater than 128, a heuristics number set
by Anon (2014), Fioraldi et al. (2020).

int Catalog::countPageTree(Object *pagesObj) {
for (i 0; i < kids.arrayGetLength(); ++i) {
kids.arrayGet (i, &kid); // Access without check
n2 countPageTree (&kid) ;
if (n2 < INT_MAX - n) {
n += n2;
} else {
error (errSyntaxError, -1,
n INT_MAX;

)

¥
kid.free();
}
}

Listing 3: Code snippet copied from xpdf. The program accesses the
array without checking the bound.

In summary, Valkyrie found six unique errors in three programs,
ranked number one compared to Angora and other variants of
Valkyrie. We can answer RQ5 with confidence that both deter-
ministic branch counting and solver contributed to Valkyrie’s bug
finding capability.

4.6. Summary

In the previous sections, we have addressed all research questions.
Our results show that Valkyrie triggers 21 unique integer and memory
errors, 10.5% and 50% more than AFL++ and Angora, respectively.
In real-world programs, Valkyrie reached 2431 branches per target on
average, 8.2% and 12.4% more compared with AFL++ and Angora,
respectively. We demonstrated that our branch counting mechanism
is a better solution for efficient and accurate feedback. Finally, we
demonstrated that our predicate solving algorithms works effectively
on real-world branch predicates, allowing Valkyrie to perform better
than the other fuzzers we use for evaluation. Thus we claim that
Valkyrie, which utilizes accurate and efficient feedback and effective
predicate solving, is principled and reliable.

5. Discussion
5.1. Unsolved predicates
Previous sections demonstrated the effectiveness of our solver. How-

ever, there are scenarios where our solver experience difficulty when
solving branch predicates.

Y. Rong et al.

Table 8

The Journal of Systems & Software 209 (2024) 111886

Bugs found by Valkyrie and Angora. Valkyrie found six bugs in three programs while Angora only found three.

Program Description Bugs found by each fuzzer
Angora Valkyrie Valkyrie-br Valkyrie-solver

cjpeg Floating point exception (4 (4 (4 v

imginfo Assertion failure-1 (gmfbid == JPC_COX_RF) v v v v

imginfo Assertion failure-2 (absstepsize >= 0) v v v

imginfo Assertion failure-3 (Check Section 4.5 for predicate details.) v v

pdftotext Throwing GMemException v v v

pdftotext Out of bound read (%4 v

The solver is designed to solve single predicates. One possible
cause would be unsolvable predicates guarding dead code, such as
redundant error checks. The solver would also have difficulty solving
some non-convex predicates, i.e., its local minima are not the global
minimum.

If the predicate is nested, the solver may mutate the input and mod-
ify the outcome of its parent predicate(s), rendering the target pred-
icate itself unreachable. We can solve this by applying Matryoshka’s
framework for solving nested branch predicate(s) (Chen et al., 2019).

On the other hand, Valkyrie relies on DFSan (Anon, 2023a), which
can be slow when input space is large. While deterministic methods
are more predicable and stable, the extra workload may prevent it from
scale to large applications. Therefore, we would suggest a combined ap-
proach where we can use Valkyrie to explore hard to trigger predicates,
and use AFL++ to explore the code.

5.2. Bug detection

We may have missed bugs in Magma due to the following reasons.
Apart from the aforementioned issues, one main reason is that our work
focus on increasing program coverage, our exploitation instrumentation
only targets a small subset of bugs. Many common problems such as
null pointer dereference, double free, use after free, etc. are not in
the scope of this paper. However, we managed to find more bugs in 3
libraries in Magma and improved branch coverage by 12.4% compared
to Angora. This fact further proved that Valkyrie is a reliable tool.

5.3. Branch counting effectiveness

In Fig. 4, we find that Valkyrie-solver can reach more branches than
Valkyrie in rare cases, e.g. readelf. Although the only difference be-
tween Valkyrie-solver and Valkyrie is the our branch counting method,
this does not suggest our method is less effective. Valkyrie-solver per-
formed better because branch counting with branch collisions may miss
many branches. These missed branches have two-sided effects. On the
one hand, there may be key branches that lead to more coverage, thus
limiting solver’s ability. On the other hand, some difficult conditions
are not generated in the first place, thus saving fuzzer’s time. When
the former effect is in dominance, Valkyrie will outperform Valkyrie-
solver, vice versa. These two-sided effects are neither predictable nor
desirable, which further justifies our motivation to eliminate branch
collisions.

6. Related work
6.1. Branch counting methods

Since AFL, much work has been devoted to strike a balance be-
tween branch counting sensitiveness and the probability of colliding.
Angora (Chen and Chen, 2018) updated AFL’s method by adding a
function context to the branch counting table. CollAFL (Gan et al.,
2018) proposed replacing AFL’s random ID generation with one that
would largely prevent duplicate edge IDs from occurring. However, its
method is subject to the bitmap size exceeding the number of branches
in the target program and cannot integrate context-sensitivity easily

13

like Valkyrie did. Recent work (Wang et al.,, 2019a) points out that
branch counting is a trade off. Fuzzers benefit from sensitive branch
counting algorithms, yet the more sensitive it is, the more computing
budget is consumes. Angora uses an enlarged branch counting table
to allow context sensitivity. However, that brings substantial memory
overhead to the fuzzing process. This problem is sloved by Valkyrie by
making branch counting collision free and reducing the size of matcher
table.

6.2. Predicate solving methods

Many work focuses on predicate solving. Solver-based fuzzers aim
at better solvers on branch predicates to reach high code coverage.
REDQUEEN (Aschermann et al., 2019) solves hashes and checksums
through input-to-state-correspondence. KLEE (Cadar et al., 2008) uses
symbolic execution to solve predicates in the program to generate
seeds, but symbolic execution can be ineffective when program path
is deep and nested. This made KLEE ineffective compared to Valkyrie.
Angora (Chen and Chen, 2018) solves branch predicates using princi-
pled methods such as gradient descent, yet in this paper we show that
without continuous assumption Angora’s solver may fail some simple
cases. Angora’s method is largely based on mathematical optimization
through gradient descent. However, Angora cannot effectively solve
branches that are nested together. Matryoshka (Chen et al., 2019)
proposes procedural methods for solving nested constraints in real-
world situations. Matryoshka solves nesting branches by a slightly
modified gradient solver, which is ad hoc and unjustifiable.

6.3. Targeted fuzzers

Targeted fuzzers attempt to target the potentially buggy code.
AFLGo (Bohme et al., 2017) proposed to reach the target code by giving
priority to those close to the target. IJON (Aschermann et al., 2020)
tries to manually take out some “important” program points and ask
the fuzzer to put more time on it. However, unlike Valkyrie which
can identify potential buggy code automatically, both AFLGo and IJON
requires a human expert to label the target. IntEgrity (Rong et al., 2020)
specifically target on integer errors and automatically identifies them
using static analysis. Unlike Valkyrie who targets integer errors and
memory errors, IntEgrity only targets integer errors, limiting its scope.
Savior (Chen et al., 2020) also targets potential bugs, but it focuses
on using seed scheduling to find those that lead to potential buggy
code. TOFO (Wang et al., 2020) proposed a method to calculate the
distances between all basic blocks in seed and target basic block and
reaches its target by always selecting the closest seed. Both Savior and
TOFO focuses on scheduling to reach targeted code faster and neglected
exploration part of the fuzzing. Therefore, their tool is useful when
reaching target for exploitation is more important than exploration.
Besides, all the tools use randomized approach to reach a target, while
only Valkyrie deals this by using a new solving method.

Y. Rong et al.

6.4. Machine learning based fuzzers

Machine learning has become more and more popular in vari-
ous areas. There have also been many attempts to incorporate it
into fuzzers. She et al. (2018) attempts to use a neural network to
smooth the predicate to predicate a gradient when it cannot be cal-
culated. Wang et al. (2017) uses data driven method to learn the input
format from valid seeds to generate other seeds. Liu et al. (2019) uses
generative model to generate C programs to fuzz compilers. However,
their work only tests C compiler, which is a very narrow scope. Large
language models (LLM) have also started to play a role in the fuzzing
community. (Deng et al., 2023; Xia et al., 2023; Zhao et al., 2023; Hu
et al., 2023) seek to use LLM to generate or mutate inputs for fuzzing.
On the other hand, (Wang et al., 2023) attempts to reach more code
by using an LLM to select program arguments. However, we believe
machine learning are black boxes that cannot be reasoned. While these
approaches trump in fuzzing, a more deterministic base line is needed
to provide a reasonable baseline.

7. Conclusion

In this paper, we identify the challenges that state-of-the-art
mutation-based greybox fuzzers face when finding vulnerabilities in
real-world scenarios and propose our solution to address these issues.
State-of-the-art fuzzers cannot achieve better performance mainly due
to the following reasons: (1) they lack accurate and fine-grained branch
counting feedback, and (2) their respective mutation strategies are not
well-suited to real-world scenarios. We propose Valkyrie, a prototype
fuzzer to address these issues. First, Valkyrie implements collision-free
context-sensitive branch counting, which eliminates branch collision
while capable of preserving context-sensitivity. Second, Valkyrie imple-
ments a predicate solver for fuzzing that adapts optimization algorithms
for the real domain to the integer domain. Finally, we use the solver
to help us trigger bugs by converting potentially exploitable code into
predicates.

We evaluated Valkyrie on the Magma benchmark as well as real-
world programs. Our results show that Valkyrie triggers 21 unique inte-
ger and memory errors, 10.5% and 50% more than AFL++ and Angora,
respectively. In real-world programs, Valkyrie’s branch counting mech-
anism proved effective by eliminating branch collisions and keeping
context-sensitivity, while AFL and Angora incur high bitmap utilization
rates, indicating significant branch collision probabilities. For coverage
statistics, Valkyrie reached 8.2% more branches on average compared
with AFL++, and 12.4% compared with Angora.

CRediT authorship contribution statement

Yuyang Rong: Methodology, Software, Validation, Data analysis,
Writing - original draft, Writing — review & editing, Visualization.
Chibin Zhang: Validation, Data analysis, Visualization. Jianzhong
Liu: Methodology, Software, Validation, Data analysis, Writing — orig-
inal draft. Hao Chen: Conceptualization, Methodology, Writing — re-
view & editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Yuyang Rong reports financial support was provided by National
science Foundation.

Data availability

Data will be made available on request.

14

The Journal of Systems & Software 209 (2024) 111886
Acknowledgment

This material is based upon work supported by the National Science
Foundation, United States under Grant No. 1801751 and 1956364.

References

Anon, 2014. American fuzzy lop, URL http://lcamtuf.coredump.cx/afl/.

Anon, 2018. afl-cov, URL https://github.com/mrash/afl-cov.

Anon, 2022. gllvm: Whole Program LLVM in Go, URL https://github.com/SRI-CSL/
gllvm.

Anon, 2023. DataFlowSanitizer, URL https://clang.llvm.org/docs/dataflowsanitizer.

Anon, 2023. LLVM Undefined Behavior Sanitizer, URL https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

Aschermann, Cornelius, et al, 2019. REDQUEEN: Fuzzing with
correspondence. In: NDSS, Vol. 19. pp. 1-15.

Aschermann, Cornelius, et al., 2020. Ijon: Exploring deep state spaces via fuzzing. In:
2020 IEEE Symposium on Security and Privacy. SP, IEEE, pp. 1597-1612.

Bohme, M., Pham, V., Roychoudhury, A., 2019. Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45 (5), 489-506. http://dx.doi.org/10.1109/
TSE.2017.2785841.

Bohme, Marcel, et al., 2017. Directed greybox fuzzing. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2329-2344.

Cadar, Cristian, Dunbar, Daniel, Engler, Dawson R., et al., 2008. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems programs. In:
0OSDI, Vol. 8. pp. 209-224.

Chen, Peng, Chen, Hao, 2018. Angora: efficient fuzzing by principled search. In: IEEE
Symposium on Security and Privacy. SP, San Francisco, CA.

Chen, Peng, Liu, Jianzhong, Chen, Hao, 2019. Matryoshka: Fuzzing deeply nested
branches. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’19, Association for Computing Machinery, New
York, NY, USA, ISBN: 9781450367479, pp. 499-513. http://dx.doi.org/10.1145/
3319535.3363225.

Chen, Jiongyi, et al., 2018. IoTFuzzer: Discovering memory corruptions in IoT through
app-based fuzzing. In: NDSS.

Chen, Yaohui, et al., 2020. Savior: Towards bug-driven hybrid testing. In: 2020 IEEE
Symposium on Security and Privacy. SP, IEEE, pp. 1580-1596.

Deng, Yinlin, et al.,, 2023. Large language models are zero-shot fuzzers: Fuzzing
deep-learning libraries via large language models. arXiv:2212.14834 [cs.SE].
Dolan-Gavitt, Brendan, et al., 2016. Lava: Large-scale automated vulnerability addition.

In: 2016 IEEE Symposium on Security and Privacy. SP, IEEE, pp. 110-121.

Emami, Maryam, Ghiya, Rakesh, Hendren, Laurie J., 1994. Context-sensitive interpro-
cedural points-to analysis in the presence of function pointers. In: Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation. PLDI '94, Association for Computing Machinery, New York, NY,
USA, ISBN: 089791662X, pp. 242-256. http://dx.doi.org/10.1145/178243.178264.

Fioraldi, Andrea, et al., 2020. AFL++: Combining incremental steps of fuzzing re-
search. In: 14th USENIX Workshop on Offensive Technologies. WOOT 20, USENIX
Association.

Gan, S., et al., 2018. CollAFL: Path sensitive fuzzing. In: 2018 IEEE Symposium on
Security and Privacy. SP, pp. 679-696. http://dx.doi.org/10.1109/SP.2018.00040.

Hazimeh, Ahmad, Herrera, Adrian, Payer, Mathias, 2020. Magma: A ground-truth
fuzzing benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4 (3), 1-29.

Hu, Jie, Zhang, Qian, Yin, Heng, 2023. Augmenting greybox fuzzing with generative
Al arXiv:2306.06782 [cs.CR].

Jeong, Dae R., et al., 2019. Razzer: Finding kernel race bugs through fuzzing. In: 2019
IEEE Symposium on Security and Privacy. SP, IEEE, pp. 754-768.

Klees, George, et al., 2018. Evaluating fuzz testing. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. ACM, pp.
2123-2138.

Li, Yuwei, et al., 2021. Unifuzz: A holistic and pragmatic metrics-driven platform for
evaluating fuzzers. In: 30th USENIX Security Symposium. USENIX Security 21,
USENIX Association.

Liu, Xiao, et al.,, 2019. DeepFuzz: Automatic generation of syntax valid C programs
for fuzz testing. In: Proceedings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence
Conference and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence. In: AAAI'19/TIAAI'19/EAAT'19, AAAI Press, ISBN: 978-1-57735-809-1,
http://dx.doi.org/10.1609/aaai.v33i01.33011044.

Liu, Baozheng, et al., 2020. {FANS}: Fuzzing android native system services via
automated interface analysis. In: 29th {USENIX} Security Symposium. {USENIX}
Security 20).

Lyu, Chenyang, et al., 2019. MOPT: Optimized mutation scheduling for fuzzers. In:
28th USENIX Security Symposium. USENIX Security 19, USENIX Association, Santa
Clara, CA, ISBN: 978-1-939133-06-9, pp. 1949-1966, URL https://www.usenix.org/
conference/usenixsecurity19/presentation/lyu.

Metzman, Jonathan, et al., 2021. FuzzBench: An open fuzzer benchmarking platform
and service. In: Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA.

input-to-state

http://lcamtuf.coredump.cx/afl/
https://github.com/mrash/afl-cov
https://github.com/SRI-CSL/gllvm
https://github.com/SRI-CSL/gllvm
https://github.com/SRI-CSL/gllvm
https://clang.llvm.org/docs/dataflowsanitizer
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb6
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb6
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb6
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb7
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb7
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1109/TSE.2017.2785841
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb9
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb10
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb11
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb11
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb11
http://dx.doi.org/10.1145/3319535.3363225
http://dx.doi.org/10.1145/3319535.3363225
http://dx.doi.org/10.1145/3319535.3363225
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb13
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb14
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb14
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb14
http://arxiv.org/abs/2212.14834
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb16
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb16
http://dx.doi.org/10.1145/178243.178264
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb18
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb18
http://dx.doi.org/10.1109/SP.2018.00040
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb20
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb20
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb20
http://arxiv.org/abs/2306.06782
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb22
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb22
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb22
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb23
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb24
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb24
http://dx.doi.org/10.1609/aaai.v33i01.33011044
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb26
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb26
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb28

Y. Rong et al.

Rong, Yuyang, Chen, Peng, Chen, Hao, 2020. Integrity: Finding integer errors
by targeted fuzzing. In: International Conference on Security and Privacy in
Communication Systems. Springer, pp. 360-380.

She, Dongdong, et al., 2018. Neuzz: Efficient fuzzing with neural program learning.
arXiv preprint arXiv:1807.05620.

Steensgaard, Bjarne, 1996. Points-to analysis in almost linear time. In: Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL 96, Association for Computing Machinery, New York, NY, USA,
ISBN: 0897917693, pp. 32-41. http://dx.doi.org/10.1145/237721.237727.

Wang, Zi, Liblit, Ben, Reps, Thomas, 2020. TOFU: Target-orienter fuzzer. arXiv preprint
arXiv:2004.14375.

Wang, Junjie, et al., 2017. Skyfire: Data-driven seed generation for fuzzing. In: 2017
IEEE Symposium on Security and Privacy. SP, pp. 579-594. http://dx.doi.org/10.
1109/SP.2017.23.

Wang, Jinghan, et al., 2019a. Be sensitive and collaborative: Analyzing impact of
coverage metrics in greybox fuzzing. In: 22nd International Symposium on Research
in Attacks, Intrusions and Defenses. {RAID} 2019), pp. 1-15.

Wang, Xueqiang, et al., 2019b. Looking from the mirror: evaluating IoT device
security through mobile companion apps. In: 28th {USENIX} Security Symposium.
{USENIX} Security 19, pp. 1151-1167.

Wang, Dawei, et al., 2023. CarpetFuzz: Automatic program option constraint ex-
traction from documentation for fuzzing. In: 32nd USENIX Security Symposium.
USENIX Security 23, USENIX Association, Anaheim, CA, ISBN: 978-1-939133-
37-3, pp. 1919-1936, URL https://www.usenix.org/conference/usenixsecurity23/
presentation/wang-dawei.

Xia, Chunqiu Steven, et al., 2023. Universal fuzzing via large language models. arXiv:
2308.04748 [cs.SE].

Xu, Wen, et al., 2019. Fuzzing file systems via two-dimensional input space exploration.
In: 2019 IEEE Symposium on Security and Privacy. SP, IEEE, pp. 818-834.

15

The Journal of Systems & Software 209 (2024) 111886

Xu, M., et al., 2020. Krace: Data race fuzzing for kernel file systems. In: 2020 IEEE
Symposium on Security and Privacy. SP, pp. 1643-1660.

Yun, Insu, et al, 2018. QSYM : A practical concolic execution engine tailored for
hybrid fuzzing. In: 27th USENIX Security Symposium. USENIX Security 18, USENIX
Association, Baltimore, MD, ISBN: 978-1-931971-46-1, pp. 745-761.

Zeller, Andreas, 2019. When results are all that matters: The case of the angora fuzzer
| andreas zeller. URL https://andreas-zeller.info/2019/10/10/when-results-are-all-
that-matters-case.html.

Zhao, Jianyu, et al., 2023. Understanding programs by exploiting (fuzzing) test cases.
arXiv:2305.13592 [cs.LG].

Yuyang Rong received his Bachlor degree at ShanghaiTech University in 2019. He
joined University of California, Davis to further pursuit a Doctoral degree. His research
interest includes fuzzing, software analysis, compiler analysis, and software security.

Chibin Zhang received his Bachelor degree at ShanghaiTech University. He is now a
Ph.D. student at Swiss Federal Institute of Technology Lausanne (EPFL). His research
focuses on fuzzing, software security.

Jianzhong Liu received his Bachelor degree at ShanghaiTech University. He is pursuing
a Ph.D. degree at Tsinghua University. His research interests are in dynamic testing
and systems security.

Hao Chen is a professor at the University of California, Davis. He received his Ph.D.
at the University of California, Berkeley. His research focuses on security, software
engineering, and machine learning. He is a fellow of IEEE.

http://refhub.elsevier.com/S0164-1212(23)00281-9/sb29
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb29
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb29
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb29
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb29
http://arxiv.org/abs/1807.05620
http://dx.doi.org/10.1145/237721.237727
http://arxiv.org/abs/2004.14375
http://dx.doi.org/10.1109/SP.2017.23
http://dx.doi.org/10.1109/SP.2017.23
http://dx.doi.org/10.1109/SP.2017.23
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb34
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb35
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb35
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-dawei
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-dawei
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-dawei
http://arxiv.org/abs/2308.04748
http://arxiv.org/abs/2308.04748
http://arxiv.org/abs/2308.04748
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb38
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb39
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb40
http://refhub.elsevier.com/S0164-1212(23)00281-9/sb40
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
http://arxiv.org/abs/2305.13592

	Valkyrie: Improving fuzzing performance through deterministic techniques
	Introduction
	Background and motivation
	Design
	Collision-free context-sensitive branch counting
	Static branch edge ID generation
	Calculate the number of context-sensitive branches
	Indirect function call context generation
	Calculate the ID of each context-sensitive branch
	Redundant branch instrumentation removal

	Compensated mutation assisted solver
	Compensation from real domain to integer domain
	Compensated gradient descent
	Solving motivating example

	Proactive bug exploitation
	Exploit point identification
	Exploration prioritized scheduling

	Evaluation
	Magma benchmark
	Real-world open-source programs
	Effectiveness of deterministic branch counting
	Effectiveness of deterministic solver
	Bug finding ability of Valkyrie
	Summary

	Discussion
	Unsolved predicates
	Bug detection
	Branch counting effectiveness

	Related work
	Branch counting methods
	Predicate Solving Methods
	Targeted fuzzers
	Machine learning based fuzzers

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

